Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acinar cell carcinoma of the pancreas is a rare tumor with a poor prognosis. Compared to pancreatic ductal adenocarcinoma, its molecular features are poorly known. We studied a total of 11 acinar cell carcinomas, including 3 by exome and 4 by target sequencing. Exome sequencing revealed 65 nonsynonymous mutations and 22 indels with a mutation rate of 3.4 mutations/Mb per tumor, on average. By accounting for not only somatic but also germline mutations with loss of the wild-type allele, we identified recurrent mutations of BRCA2 and FAT genes. BRCA2 showed somatic or germline premature termination mutations, with loss of the wild-type allele in 3 of 7 tumors. FAT1, FAT3, and FAT4 showed somatic or germline missense mutations in 4 of 7 tumors. The germline FAT mutations were with loss of the wild-type allele. Loss of BRCA2 expression was observed in 5 of 11 tumors. One patient with a BRCA2-mutated tumor experienced complete remission of liver metastasis following cisplatinum chemotherapy. In conclusion, acinar cell carcinomas show a distinct mutation pattern and often harbor somatic or germline mutations of BRCA2 and FAT genes. This result may warrant assessment of BRCA2 abrogation in patients with the carcinoma to determine their sensitivity to chemotherapy.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV.

          The ability to detect copy-number variation (CNV) and loss of heterozygosity (LOH) from exome sequencing data extends the utility of this powerful approach that has mainly been used for point or small insertion/deletion detection. We present ExomeCNV, a statistical method to detect CNV and LOH using depth-of-coverage and B-allele frequencies, from mapped short sequence reads, and we assess both the method's power and the effects of confounding variables. We apply our method to a cancer exome resequencing dataset. As expected, accuracy and resolution are dependent on depth-of-coverage and capture probe design. CRAN package 'ExomeCNV'. fsathira@fas.harvard.edu; snelson@ucla.edu Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Function and cancer genomics of FAT family genes

            FAT1, FAT2, FAT3 and FAT4 are human homologs of Drosophila Fat, which is involved in tumor suppression and planar cell polarity (PCP). FAT1 and FAT4 undergo the first proteolytic cleavage by Furin and are predicted to undergo the second cleavage by γ-secretase to release intracellular domain (ICD). Ena/VAPS-binding to FAT1 induces actin polymerization at lamellipodia and filopodia to promote cell migration, while Scribble-binding to FAT1 induces phosphorylation and functional inhibition of YAP1 to suppress cell growth. FAT1 is repressed in oral cancer owing to homozygous deletion or epigenetic silencing and is preferentially downregulated in invasive breast cancer. On the other hand, FAT1 is upregulated in leukemia and prognosis of preB-ALL patients with FAT1 upregulation is poor. FAT4 directly interacts with MPDZ/MUPP1 to recruit membrane-associated guanylate kinase MPP5/PALS1. FAT4 is involved in the maintenance of PCP and inhibition of cell proliferation. FAT4 mRNA is repressed in breast cancer and lung cancer due to promoter hypermethylation. FAT4 gene is recurrently mutated in several types of human cancers, such as melanoma, pancreatic cancer, gastric cancer and hepatocellular carcinoma. FAT1 and FAT4 suppress tumor growth via activation of Hippo signaling, whereas FAT1 promotes tumor migration via induction of actin polymerization. FAT1 is tumor suppressive or oncogenic in a context-dependent manner, while FAT4 is tumor suppressive. Copy number aberration, translocation and point mutation of FAT1, FAT2, FAT3, FAT4, FRMD1, FRMD6, NF2, WWC1, WWC2, SAV1, STK3, STK4, MOB1A, MOB1B, LATS1, LATS2, YAP1 and WWTR1/TAZ genes should be comprehensively investigated in various types of human cancers to elucidate the mutation landscape of the FAT-Hippo signaling cascades. Because YAP1 and WWTR1 are located at the crossroads of adhesion, GPCR, RTK and stem-cell signaling network, cancer genomics of the FAT signaling cascades could be applied for diagnostics, prognostics and therapeutics in the era of personalized medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions.

              BRCA1 and BRCA2 germline mutations are associated with an elevated risk for pancreas adenocarcinoma (PAC). Other BRCA-associated cancers have been shown to have greater sensitivity to platinum and poly(ADP-ribose) polymerase (PARP) inhibitors with better clinical outcomes than in sporadic cases; however, outcomes in BRCA-associated PAC have not been reported. Patients with a known BRCA1 or BRCA2 mutation and a diagnosis of PAC were identified from the Gastrointestinal Oncology Service, Familial Pancreas Cancer Registry, and Clinical Genetics Service at Memorial Sloan-Kettering Cancer Center. Fifteen patients, five male, with a BRCA1 (n = 4) or BRCA2 (n = 11) mutation and PAC and one patient with a BRCA1 mutation and acinar cell carcinoma of the pancreas were identified. Seven female patients (70%) had a prior history of breast cancer. Four patients received a PARP inhibitor alone or in combination with chemotherapy; three demonstrated an initial radiographic partial response by Response Evaluation Criteria in Solid Tumors whereas one patient had stable disease for 6 months. Six patients received platinum-based chemotherapy first line for metastatic disease; five of those patients had a radiographic partial response. BRCA mutation-associated PAC represents an underidentified, but clinically important, subgroup of patients. This is of particular relevance given the ongoing development of therapeutic agents targeting DNA repair, which may potentially offer a significant benefit to a genetically selected population. We anticipate that further study and understanding of the clinical and biologic features of BRCA-mutant PAC will aid in the identification of tissue biomarkers indicating defective tumor DNA repair pathways in sporadic PAC.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                06 March 2015
                2015
                : 5
                : 8829
                Affiliations
                [1 ]Institute for Integrated Medical Sciences, Tokyo Women's Medical University , Tokyo, Japan
                [2 ]Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University , Tokyo, Japan
                [3 ]Department of Gastroenterology, Institute of Gastroenterology, Tokyo Women's Medical University , Tokyo, Japan
                [4 ]Department of Pathology, Tokyo Women's Medical University , Tokyo, Japan
                [5 ]Department of Surgical Pathology, Tokyo Women's Medical University , Tokyo, Japan
                [6 ]Department of Surgery, Kyorin University School of Medicine , Mitaka, Japan
                [7 ]Department of Pathology, Showa University School of Medicine , Tokyo, Japan
                [8 ]Department of Pathology, Saitama Medical University International Medical Center , Hidaka, Japan
                Author notes
                Article
                srep08829
                10.1038/srep08829
                4351513
                25743105
                fff750f3-83f5-4bad-a370-e34d78182181
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 October 2014
                : 05 February 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article