1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      A Brief Overview of the Systematics, Taxonomy, and Ecology of the Tuber rufum Clade

      other
      , ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees.

          In the mycorrhizal symbiosis, plants exchange photosynthates for mineral nutrients acquired by fungi from the soil. This mutualistic arrangement has been subverted by hundreds of mycorrhizal plant species that lack the ability to photosynthesize. The most numerous examples of this behaviour are found in the largest plant family, the Orchidaceae. Although these non-photosynthetic orchid species are known to be highly specialized exploiters of the ectomycorrhizal symbiosis, photosynthetic orchids are thought to use free-living saprophytic, or pathogenic, fungal lineages. However, we present evidence that putatively photosynthetic orchids from five species which grow in the understorey of forests: (i) form mycorrhizas with ectomycorrhizal fungi of forest trees; and (ii) have stable isotope signatures indicating distinctive pathways for nitrogen and carbon acquisition approaching those of non-photosynthetic orchids that associate with ectomycorrhizal fungi of forest trees. These findings represent a major shift in our understanding of both orchid ecology and evolution because they explain how orchids can thrive in low-irradiance niches and they show that a shift to exploiting ectomycorrhizal fungi precedes viable losses of photosynthetic ability in orchid lineages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage

            Truffles have evolved from epigeous (aboveground) ancestors in nearly every major lineage of fleshy fungi. Because accelerated rates of morphological evolution accompany the transition to the truffle form, closely related epigeous ancestors remain unknown for most truffle lineages. This is the case for the quintessential truffle genus Tuber, which includes species with socio-economic importance and esteemed culinary attributes. Ecologically, Tuber spp. form obligate mycorrhizal symbioses with diverse species of plant hosts including pines, oaks, poplars, orchids, and commercially important trees such as hazelnut and pecan. Unfortunately, limited geographic sampling and inconclusive phylogenetic relationships have obscured our understanding of their origin, biogeography, and diversification. To address this problem, we present a global sampling of Tuberaceae based on DNA sequence data from four loci for phylogenetic inference and molecular dating. Our well-resolved Tuberaceae phylogeny shows high levels of regional and continental endemism. We also identify a previously unknown epigeous member of the Tuberaceae – the South American cup-fungus Nothojafnea thaxteri (E.K. Cash) Gamundí. Phylogenetic resolution was further improved through the inclusion of a previously unrecognized Southern hemisphere sister group of the Tuberaceae. This morphologically diverse assemblage of species includes truffle (e.g. Gymnohydnotrya spp.) and non-truffle forms that are endemic to Australia and South America. Southern hemisphere taxa appear to have diverged more recently than the Northern hemisphere lineages. Our analysis of the Tuberaceae suggests that Tuber evolved from an epigeous ancestor. Molecular dating estimates Tuberaceae divergence in the late Jurassic (∼156 million years ago), with subsequent radiations in the Cretaceous and Paleogene. Intra-continental diversification, limited long-distance dispersal, and ecological adaptations help to explain patterns of truffle evolution and biodiversity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal.

              Truffles (Tuber) are ectomycorrhizal fungi characterized by hypogeous fruitbodies. Their biodiversity, host associations and geographical distributions are not well documented. ITS rDNA sequences of Tuber are commonly recovered from molecular surveys of fungal communities, but most remain insufficiently identified making it difficult to determine whether these sequences represent conspecific or novel taxa. In this meta-analysis, over 2000 insufficiently identified Tuber sequences from 76 independent studies were analysed within a phylogenetic framework. Species ranges, host associates, geographical distributions and intra- and interspecific ITS variability were assessed. Over 99% of the insufficiently identified Tuber sequences grouped within clades composed of species with little culinary value (Maculatum, Puberulum and Rufum). Sixty-four novel phylotypes were distinguished including 36 known only from ectomycorrhizae or soil. Most species of Tuber showed 1-3% intraspecific ITS variability and >4% interspecific ITS sequence variation. We found 123 distinct phylotypes based on 96% ITS sequence similarity and estimated that Tuber contains a minimum of 180 species. Based on this meta-analysis, species in Excavatum, Maculatum and Rufum clades exhibit preference for angiosperm hosts, whereas those in the Gibbosum clade are preferential towards gymnosperms. Sixteen Tuber species (>13% of the known diversity) have putatively been introduced to continents or islands outside their native range. © 2010 Blackwell Publishing Ltd.
                Bookmark

                Author and book information

                Book Chapter
                2016
                July 27 2016
                : 125-136
                10.1007/978-3-319-31436-5_8
                04492d10-6a7c-4a7c-a050-8a054810a159
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,654

                Cited by1