137
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since 2003, H5N1 influenza viruses have caused over 400 known cases of human infection with a mortality rate greater than 60%. Most of these cases resulted from direct contact with virus-contaminated poultry or poultry products. Although only limited human-to-human transmission has been reported to date, it is feared that efficient human-to-human transmission of H5N1 viruses has the potential to cause a pandemic of disastrous proportions. The genetic basis for H5N1 viral transmission among humans is largely unknown. In this study, we used guinea pigs as a mammalian model to study the transmission of six different H5N1 avian influenza viruses. We found that two viruses, A/duck/Guangxi/35/2001 (DKGX/35) and A/bar-headed goose/Qinghai/3/2005(BHGQH/05), were transmitted from inoculated animals to naïve contact animals. Our mutagenesis analysis revealed that the amino acid asparagine (Asn) at position 701 in the PB2 protein was a prerequisite for DKGX/35 transmission in guinea pigs. In addition, an amino acid change in the hemagglutinin (HA) protein (Thr160Ala), resulting in the loss of glycosylation at 158-160, was responsible for HA binding to sialylated glycans and was critical for H5N1 virus transmission in guinea pigs. These amino acids changes in PB2 and HA could serve as important molecular markers for assessing the pandemic potential of H5N1 field isolates.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Avian flu: influenza virus receptors in the human airway.

          Although more than 100 people have been infected by H5N1 influenza A viruses, human-to-human transmission is rare. What are the molecular barriers limiting human-to-human transmission? Here we demonstrate an anatomical difference in the distribution in the human airway of the different binding molecules preferred by the avian and human influenza viruses. The respective molecules are sialic acid linked to galactose by an alpha-2,3 linkage (SAalpha2,3Gal) and by an alpha-2,6 linkage (SAalpha2,6Gal). Our findings may provide a rational explanation for why H5N1 viruses at present rarely infect and spread between humans although they can replicate efficiently in the lungs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Avian influenza A (H5N1) infection in humans.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses.

              M Hatta (2001)
              In 1997, an H5N1 influenza A virus was transmitted from birds to humans in Hong Kong, killing 6 of the 18 people infected. When mice were infected with the human isolates, two virulence groups became apparent. Using reverse genetics, we showed that a mutation at position 627 in the PB2 protein influenced the outcome of infection in mice. Moreover, high cleavability of the hemagglutinin glycoprotein was an essential requirement for lethal infection.
                Bookmark

                Author and article information

                Journal
                PLoS Pathog
                PLoS pathogens
                Public Library of Science (PLoS)
                1553-7374
                1553-7366
                Dec 2009
                : 5
                : 12
                Affiliations
                [1 ] Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
                Article
                10.1371/journal.ppat.1000709
                2791199
                20041223
                c93f52d6-ea16-439e-93f1-f60a4e2d8940
                History

                Comments

                Comment on this article