31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans.

      Nature medicine
      Adult, Aged, Biological Transport, Blood, metabolism, Body Mass Index, Cerebrospinal Fluid, Female, Humans, Leptin, Male, Obesity, Proteins, Regression Analysis

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The adipocyte hormone, leptin (OB protein), is proposed to be an "adiposity signal" that acts in the brain to lower food intake and adiposity. As plasma leptin levels are elevated in most overweight individuals, obesity may be associated with leptin resistance. To investigate the mechanisms underlying brain leptin uptake and to determine whether reduced uptake may contribute to leptin resistance, we measured immunoreactive leptin levels in plasma and cerebrospinal fluid (CSF) of 53 human subjects. Leptin concentrations in CSF were strongly correlated to the plasma level in a nonlinear manner (r = 0.92; p = 0.0001). Like levels in plasma, CSF leptin levels were correlated to body mass index (r = 0.43; p = 0.001), demonstrating that plasma leptin enters human cerebrospinal fluid in proportion to body adiposity. However, the efficiency of this uptake (measured as the CSF:plasma leptin ratio) was lower among those in the highest as compared with the lowest plasma leptin quintile (5.4-fold difference). We hypothesize that a saturable mechanism mediates CSF leptin transport, and that reduced efficiency of brain leptin delivery among obese individuals with high plasma leptin levels results in apparent leptin resistance.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and expression cloning of a leptin receptor, OB-R.

          The ob gene product, leptin, is an important circulating signal for the regulation of body weight. To identify high affinity leptin-binding sites, we generated a series of leptin-alkaline phosphatase (AP) fusion proteins as well as [125I]leptin. After a binding survey of cell lines and tissues, we identified leptin-binding sites in the mouse choroid plexus. A cDNA expression library was prepared from mouse choroid plexus and screened with a leptin-AP fusion protein to identify a leptin receptor (OB-R). OB-R is a single membrane-spanning receptor most related to the gp130 signal-transducing component of the IL-6 receptor, the G-CSF receptor, and the LIF receptor. OB-R mRNA is expressed not only in choroid plexus, but also in several other tissues, including hypothalamus. Genetic mapping of the gene encoding OB-R shows that it is within the 5.1 cM interval of mouse chromosome 4 that contains the db locus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Abnormal splicing of the leptin receptor in diabetic mice.

            Mutations in the mouse diabetes (db) gene result in obesity and diabetes in a syndrome resembling morbid human obesity. Previous data suggest that the db gene encodes the receptor for the obese (ob) gene product, leptin. A leptin receptor was recently cloned from choroid plexus and shown to map to the same 6-cM interval on mouse chromosome 4 as db. This receptor maps to the same 300-kilobase interval as db, and has at least six alternatively spliced forms. One of these splice variants is expressed at a high level in the hypothalamus, and is abnormally spliced in C57BL/Ks db/db mice. The mutant protein is missing the cytoplasmic region, and is likely to be defective in signal transduction. This suggests that the weight-reducing effects of leptin may be mediated by signal transduction through a leptin receptor in the hypothalamus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of neuropeptide Y in the antiobesity action of the obese gene product.

              Recently Zhang et al. cloned a gene that is expressed only in adipose tissue of the mouse. The obese phenotype of the ob/ob mouse is linked to a mutation in the obese gene that results in expression of a truncated inactive protein. Human and rat homologues for this gene are known. Previous experiments predict such a hormone to have a hypothalamic target. Hypothalamic neuropeptide Y stimulates food intake, decreases thermogenesis, and increases plasma insulin and corticosterone levels making it a potential target. Here we express the obese protein in Escherichia coli and find that it suppresses food intake and decreases body weight dramatically when administered to normal and ob/ob mice but not db/db (diabetic) mice, which are thought to lack the appropriate receptor. High-affinity binding was detected in the rat hypothalamus. One mechanism by which this protein regulated food intake and metabolism was inhibition of neuropeptide-Y synthesis and release.
                Bookmark

                Author and article information

                Comments

                Comment on this article