50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ATM and MET kinases are synthetic lethal with non-genotoxic activation of p53

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a ‘Synthetic Lethal with Nutlin-3’ genome-wide shRNA screen, which revealed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors enable Nutlin-3 to kill tumor spheroids. These results identify novel pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.

          Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Live or let die: the cell's response to p53.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATM activation by oxidative stress.

              The ataxia-telangiectasia mutated (ATM) protein kinase is activated by DNA double-strand breaks (DSBs) through the Mre11-Rad50-Nbs1 (MRN) DNA repair complex and orchestrates signaling cascades that initiate the DNA damage response. Cells lacking ATM are also hypersensitive to insults other than DSBs, particularly oxidative stress. We show that oxidation of ATM directly induces ATM activation in the absence of DNA DSBs and the MRN complex. The oxidized form of ATM is a disulfide-cross-linked dimer, and mutation of a critical cysteine residue involved in disulfide bond formation specifically blocked activation through the oxidation pathway. Identification of this pathway explains observations of ATM activation under conditions of oxidative stress and shows that ATM is an important sensor of reactive oxygen species in human cells.
                Bookmark

                Author and article information

                Journal
                101231976
                32624
                Nat Chem Biol
                Nat. Chem. Biol.
                Nature chemical biology
                1552-4450
                1552-4469
                3 August 2012
                03 June 2012
                July 2012
                01 January 2013
                : 8
                : 7
                : 646-654
                Affiliations
                [1 ]Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder
                [2 ]Department of Pediatrics, University of Colorado at Denver Anschutz Medical Campus
                [3 ]Department of Medicine/Medical Oncology, University of Colorado at Denver Anschutz Medical Campus
                [4 ]Department of Biochemistry and Molecular Genetics, University of Colorado at Denver Anschutz Medical Campus
                Author notes
                [* ]To whom correspondence should be addressed: joaquin.espinosa@ 123456colorado.edu ; FAX: (303) 492-7744
                Article
                NIHMS397938
                10.1038/nchembio.965
                3430605
                22660439
                d30f8ddf-f781-47be-9786-0978f776edde

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Cancer Institute : NCI
                Award ID: R01 CA117907 || CA
                Categories
                Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article