23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA.

      Febs Letters
      Amino Acid Sequence, Base Sequence, Blotting, Northern, Cloning, Molecular, DNA, Humans, Melanocyte-Stimulating Hormones, metabolism, Molecular Sequence Data, Polymerase Chain Reaction, Receptors, Pituitary Hormone, genetics

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Melanocytes and melanoma cells are known to possess receptors for melanocyte stimulating hormone (MSH). A cDNA clone, designated 11D, has been isolated from human melanoma cells and encodes a MSH receptor. The cloned cDNA encodes a 317 amino acid protein with transmembrane topography characteristics of a G-protein-coupled receptor, but it does not show striking similarity to already published sequences of other G-protein-coupled receptors. When 11D cDNA is expressed in COS-7 cells, it binds an 125I-labelled MSH analogue (NDP-MSH) in a specific manner. The bound ligand could be displaced by melanotropic peptides, alpha-MSH, beta-MSH, gamma-MSH and ACTH (adrenocorticotropic hormone), but not by the non-melanotropic peptide, beta-endorphin. This is the first report of the cloning of the receptor gene of the melanotropin receptor family.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity.

          The alpha 1B-adrenergic receptor (alpha 1B-ADR) is a member of the G-protein-coupled family of transmembrane receptors. When transfected into Rat-1 and NIH 3T3 fibroblasts, this receptor induces focus formation in an agonist-dependent manner. Focus-derived, transformed fibroblasts exhibit high levels of functional alpha 1B-ADR expression, demonstrate a catecholamine-induced enhancement in the rate of cellular proliferation, and are tumorigenic when injected into nude mice. Induction of neoplastic transformation by the alpha 1B-ADR, therefore, identifies this normal cellular gene as a protooncogene. Mutational alteration of this receptor can lead to activation of this protooncogene, resulting in an enhanced ability of agonist to induce focus formation with a decreased latency and quantitative increase in transformed foci. In contrast to cells expressing the wild-type alpha 1B-ADR, focus formation in "oncomutant"-expressing cell lines appears constitutively activated with the generation of foci in unstimulated cells. Further, these cell lines exhibit near-maximal rates of proliferation even in the absence of catecholamine supplementation. They also demonstrate an enhanced ability for tumor generation in nude mice with a decreased period of latency compared with cells expressing the wild-type receptor. Thus, the alpha 1B-ADR gene can, when overexpressed and activated, function as an oncogene inducing neoplastic transformation. Mutational alteration of this receptor gene can result in the activation of this protooncogene, enhancing its oncogenic potential. These findings suggest that analogous spontaneously occurring mutations in this class of receptor proteins could play a key role in the induction or progression of neoplastic transformation and atherosclerosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of tyrosinase in human melanocytes grown in culture

            Tyrosinase, the enzyme that controls the synthesis of melanin, is a unique product of melanocytes. Normal and malignant human melanocytes grown in culture were used to study the factors that regulate the expression of tyrosinase. Immunoprecipitation experiments showed that newly synthesized tyrosinase appeared as a protein with an apparent molecular weight of 70,000 that was processed to a protein with an apparent molecular weight of 80,000. Neither tunicamycin nor 2-deoxy-D- glucose inhibited this conversion, suggesting that O-glycosylation is the major biochemical event in the posttranslational modification of tyrosinase. Agents that stimulated the proliferation of normal melanocytes also stimulated tyrosinase activity. Melanocytes with low levels of tyrosinase activity synthesized less tyrosinase, processed the enzyme more slowly, and degraded it more rapidly than melanocytes with high levels of tyrosinase activity. We conclude that tyrosinase activity in cultures of human melanocytes derived from different donors is determined predominantly by its abundance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation.

              Neurotransmitter receptors are usually restricted to neuronal cells, but the signaling pathways activated by these receptors are widely distributed in both neural and non-neural cells. The functional consequences of activating a brain-specific neurotransmitter receptor, the serotonin 5HT1c receptor, in the unnatural environment of a fibroblast were examined. Introduction of functional 5HT1c receptors into NIH 3T3 cells results, at high frequency, in the generation of transformed foci. Moreover, the generation and maintenance of transformed foci requires continued activation of the serotonin receptor. In addition, the injection of cells derived from transformed foci into nude mice results in the generation of tumors. The serotonin 5HT1c receptor therefore functions as a protooncogene when expressed in NIH 3T3 fibroblasts.
                Bookmark

                Author and article information

                Comments

                Comment on this article