261
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The brain ages optimally to model its environment: evidence from sensory learning over the adult lifespan.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aging brain shows a progressive loss of neuropil, which is accompanied by subtle changes in neuronal plasticity, sensory learning and memory. Neurophysiologically, aging attenuates evoked responses--including the mismatch negativity (MMN). This is accompanied by a shift in cortical responsivity from sensory (posterior) regions to executive (anterior) regions, which has been interpreted as a compensatory response for cognitive decline. Theoretical neurobiology offers a simpler explanation for all of these effects--from a Bayesian perspective, as the brain is progressively optimized to model its world, its complexity will decrease. A corollary of this complexity reduction is an attenuation of Bayesian updating or sensory learning. Here we confirmed this hypothesis using magnetoencephalographic recordings of the mismatch negativity elicited in a large cohort of human subjects, in their third to ninth decade. Employing dynamic causal modeling to assay the synaptic mechanisms underlying these non-invasive recordings, we found a selective age-related attenuation of synaptic connectivity changes that underpin rapid sensory learning. In contrast, baseline synaptic connectivity strengths were consistently strong over the decades. Our findings suggest that the lifetime accrual of sensory experience optimizes functional brain architectures to enable efficient and generalizable predictions of the world.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Bayesian measures of model complexity and fit

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A theory of cortical responses.

            This article concerns the nature of evoked brain responses and the principles underlying their generation. We start with the premise that the sensory brain has evolved to represent or infer the causes of changes in its sensory inputs. The problem of inference is well formulated in statistical terms. The statistical fundaments of inference may therefore afford important constraints on neuronal implementation. By formulating the original ideas of Helmholtz on perception, in terms of modern-day statistical theories, one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts.It turns out that the problems of inferring the causes of sensory input (perceptual inference) and learning the relationship between input and cause (perceptual learning) can be resolved using exactly the same principle. Specifically, both inference and learning rest on minimizing the brain's free energy, as defined in statistical physics. Furthermore, inference and learning can proceed in a biologically plausible fashion. Cortical responses can be seen as the brain's attempt to minimize the free energy induced by a stimulus and thereby encode the most likely cause of that stimulus. Similarly, learning emerges from changes in synaptic efficacy that minimize the free energy, averaged over all stimuli encountered. The underlying scheme rests on empirical Bayes and hierarchical models of how sensory input is caused. The use of hierarchical models enables the brain to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of cortical organization and responses. The aim of this article is to encompass many apparently unrelated anatomical, physiological and psychophysical attributes of the brain within a single theoretical perspective. In terms of cortical architectures, the theoretical treatment predicts that sensory cortex should be arranged hierarchically, that connections should be reciprocal and that forward and backward connections should show a functional asymmetry (forward connections are driving, whereas backward connections are both driving and modulatory). In terms of synaptic physiology, it predicts associative plasticity and, for dynamic models, spike-timing-dependent plasticity. In terms of electrophysiology, it accounts for classical and extra classical receptive field effects and long-latency or endogenous components of evoked cortical responses. It predicts the attenuation of responses encoding prediction error with perceptual learning and explains many phenomena such as repetition suppression, mismatch negativity (MMN) and the P300 in electroencephalography. In psychophysical terms, it accounts for the behavioural correlates of these physiological phenomena, for example, priming and global precedence. The final focus of this article is on perceptual learning as measured with the MMN and the implications for empirical studies of coupling among cortical areas using evoked sensory responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whatever next? Predictive brains, situated agents, and the future of cognitive science.

              Andy Clark (2013)
              Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to adaptive success. This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action. Sections 1 and 2 lay out the key elements and implications of the approach. Section 3 explores a variety of pitfalls and challenges, spanning the evidential, the methodological, and the more properly conceptual. The paper ends (sections 4 and 5) by asking how such approaches might impact our more general vision of mind, experience, and agency.
                Bookmark

                Author and article information

                Journal
                PLoS Comput. Biol.
                PLoS computational biology
                Public Library of Science (PLoS)
                1553-7358
                1553-734X
                Jan 2014
                : 10
                : 1
                Affiliations
                [1 ] Virginia Tech Carilion Research Institute and Bradley Department of Electrical & Computer Engineering, Roanoke, Virginia, United States of America.
                [2 ] Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom ; Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom.
                [3 ] Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom.
                Article
                PCOMPBIOL-D-13-01339
                10.1371/journal.pcbi.1003422
                3900375
                24465195
                07ca80eb-88bb-453d-85f8-c293aa79e6ed
                History

                Comments

                Comment on this article