13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma

      , , , , , , , ,
      Oncogene
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic ductal adenocarcinoma (PDAC) is characterized by a high degree of inflammation and profound immune suppression. Here we identify Yes-associated protein (Yap) as a critical regulator of the immunosuppressive microenvironment in both mouse and human PDAC. Within Kras:p53 mutant pancreatic ductal cells, Yap drives the expression and secretion of multiple cytokines/chemokines, which in turn promote the differentiation and accumulation of Myeloid-derived suppressor cells (MDSCs) both in vitro and in vivo. Pancreas-specific knockout of Yap or antibody-mediated depletion of MDSCs promoted macrophage reprogramming, reactivation of T cells, apoptosis of Kras mutant neoplastic ductal cells, and pancreatic regeneration after acute pancreatitis. In primary human PDAC, YAP expression levels strongly correlate with a MDSC gene signature, and high expression of YAP or MDSC-related genes predicts decreased survival in PDAC patients. These results reveal multifaceted roles YAP in PDAC pathogenesis and underscore its promise as a therapeutic target for this deadly disease.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse.

          To evaluate the role of oncogenic RAS mutations in pancreatic tumorigenesis, we directed endogenous expression of KRAS(G12D) to progenitor cells of the mouse pancreas. We find that physiological levels of Kras(G12D) induce ductal lesions that recapitulate the full spectrum of human pancreatic intraepithelial neoplasias (PanINs), putative precursors to invasive pancreatic cancer. The PanINs are highly proliferative, show evidence of histological progression, and activate signaling pathways normally quiescent in ductal epithelium, suggesting potential therapeutic and chemopreventive targets for the cognate human condition. At low frequency, these lesions also progress spontaneously to invasive and metastatic adenocarcinomas, establishing PanINs as definitive precursors to the invasive disease. Finally, mice with PanINs have an identifiable serum proteomic signature, suggesting a means of detecting the preinvasive state in patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome.

            The p53 tumor suppressor gene is commonly altered in human tumors, predominantly through missense mutations that result in accumulation of mutant p53 protein. These mutations may confer dominant-negative or gain-of-function properties to p53. To ascertain the physiological effects of p53 point mutation, the structural mutant p53R172H and the contact mutant p53R270H (codons 175 and 273 in humans) were engineered into the endogenous p53 locus in mice. p53R270H/+ and p53R172H/+ mice are models of Li-Fraumeni Syndrome; they developed allele-specific tumor spectra distinct from p53+/- mice. In addition, p53R270H/- and p53R172H/- mice developed novel tumors compared to p53-/- mice, including a variety of carcinomas and more frequent endothelial tumors. Dominant effects that varied by allele and function were observed in primary cells derived from p53R270H/+ and p53R172H/+ mice. These results demonstrate that point mutant p53 alleles expressed under physiological control have enhanced oncogenic potential beyond the simple loss of p53 function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics of the immune reaction to pancreatic cancer from inception to invasion.

              The dynamics of cancer immunosurveillance remain incompletely understood, hampering efforts to develop immunotherapy of cancer. We evaluated the evolving in vivo immune response to a spontaneous tumor in a genetically defined mouse model of pancreatic ductal adenocarcinoma from the inception of preinvasive disease to invasive cancer. We observed a prominent leukocytic infiltration even around the lowest grade preinvasive lesions, but immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg), dominated the early response and persisted through invasive cancer. Effector T cells, however, were scarce in preinvasive lesions, found in only a subset of advanced cancers, and showed no evidence of activation. The lack of tumor-infiltrating effector T cells strongly correlated with the presence of intratumoral MDSC with a near mutual exclusion. In vitro, we found that MDSC suppressed T-cell proliferation. Overall, our results show that suppressive cells of the host immune system appear early during pancreatic tumorigenesis, preceding and outweighing antitumor cellular immunity, and likely contribute to disease progression. Thus, in contrast to the hypothesis that an early "elimination phase" of cancer immunosurveillance is eventually overwhelmed by a growing invasive tumor, our findings suggest that productive tumor immunity may be undermined from the start. Efforts to test potent inhibitors of MDSC, tumor-associated macrophages, and Treg, particularly early in the disease represent important next steps for developing novel immunotherapy of cancer.
                Bookmark

                Author and article information

                Journal
                Oncogene
                Oncogene
                Springer Nature
                0950-9232
                1476-5594
                August 22 2016
                August 22 2016
                : 36
                : 9
                : 1232-1244
                Article
                10.1038/onc.2016.288
                112d4c1c-db0d-4834-9321-92d769a694eb
                © 2016
                History

                Comments

                Comment on this article