125
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative stress: a concept in redox biology and medicine

      Redox Biology
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydroperoxide metabolism in mammalian organs.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strategies of antioxidant defense.

            H Sies (1993)
            Cellular protection against the deleterious effects of reactive oxidants generated in aerobic metabolism, called oxidative stress, is organized at multiple levels. Defense strategies include three levels of protection; prevention, interception, and repair. Regulation of the antioxidant capacity includes the maintenance of adequate levels of antioxidant and the localization of antioxidant compounds and enzymes. Short-term and long-term adaptation and cell specialisation in these functions are new areas of interest. Control over the activity of prooxidant enzymes, such as NADPH oxidase and NO synthases, is crucial. Synthetic antioxidants mimic biological strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of the OxyR transcription factor by reversible disulfide bond formation.

              The OxyR transcription factor is sensitive to oxidation and activates the expression of antioxidant genes in response to hydrogen peroxide in Escherichia coli. Genetic and biochemical studies revealed that OxyR is activated through the formation of a disulfide bond and is deactivated by enzymatic reduction with glutaredoxin 1 (Grx1). The gene encoding Grx1 is regulated by OxyR, thus providing a mechanism for autoregulation. The redox potential of OxyR was determined to be -185 millivolts, ensuring that OxyR is reduced in the absence of stress. These results represent an example of redox signaling through disulfide bond formation and reduction.
                Bookmark

                Author and article information

                Journal
                10.1016/j.redox.2015.01.002
                http://creativecommons.org/licenses/by-nc-nd/4.0/

                Comments

                Comment on this article