52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes

      research-article
      ,
      Nature reviews. Rheumatology

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rheumatoid arthritis (RA) is a chronic immune-mediated disease that primarily affects the synovium of diarthrodial joints. During the course of RA, the synovium transforms into a hyperplastic invasive tissue that causes destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype in RA and have an important role in these pathological processes. In addition to producing the extracellular matrix and joint lubricants, FLS in RA produce pathogenic mediators such as cytokines and proteases that contribute to disease pathogenesis and perpetuation. The development of multi-omics integrative analyses have enabled new ways to dissect the mechanisms that imprint FLS, have helped to identify potential FLS subsets with distinct functions and have identified differences in FLS phenotypes between joints in individual patients. This Review provides an overview of advances in understanding of FLS biology and highlights omics approaches and studies that hold promise for identifying future therapeutic targets.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: not found
          • Article: not found

          Cancer. p53, guardian of the genome.

          D P Lane (1992)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis.

            Rheumatoid arthritis (RA) remains a significant unmet medical need despite significant therapeutic advances. The pathogenesis of RA is complex and includes many cell types, including T cells, B cells, and macrophages. Fibroblast-like synoviocytes (FLS) in the synovial intimal lining also play a key role by producing cytokines that perpetuate inflammation and proteases that contribute to cartilage destruction. Rheumatoid FLS develop a unique aggressive phenotype that increases invasiveness into the extracellular matrix and further exacerbates joint damage. Recent advances in understanding the biology of FLS, including their regulation regulate innate immune responses and activation of intracellular signaling mechanisms that control their behavior, provide novel insights into disease mechanisms. New agents that target FLS could potentially complement the current therapies without major deleterious effect on adaptive immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions

              Base editing is a recently developed approach to genome editing that uses a fusion protein containing a catalytically defective Streptococcus pyogenes Cas9, a cytidine deaminase, and an inhibitor of base excision repair to induce programmable, single-nucleotide changes in the DNA of living cells without generating double-strand DNA breaks, without requiring a donor DNA template, and without inducing an excess of stochastic insertions and deletions 1 . Here we report the development of five new C→T (or G→A) base editors that use natural and engineered Cas9 variants with different protospacer-adjacent motif (PAM) specificities to expand the number of sites that can be targeted by base editing by 2.5-fold. Additionally, we engineered new base editors containing mutated cytidine deaminase domains that narrow the width of the apparent editing window from approximately 5 nucleotides to as little as 1 to 2 nucleotides, enabling the discrimination of neighboring C nucleotides that would previously be edited with comparable efficiency, thereby doubling the number of disease-associated target Cs that can be corrected preferentially over nearby non-target Cs. Collectively, these developments substantially increase the targeting scope of base editing and establish the modular nature of base editors.
                Bookmark

                Author and article information

                Journal
                101500080
                35767
                Nat Rev Rheumatol
                Nat Rev Rheumatol
                Nature reviews. Rheumatology
                1759-4790
                1759-4804
                9 March 2021
                11 May 2020
                June 2020
                23 March 2021
                : 16
                : 6
                : 316-333
                Affiliations
                Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, San Diego, CA, USA.
                Author notes

                Author contributions

                The authors contributed equally to all aspects of the article.

                Author information
                http://orcid.org/0000-0003-3495-960X
                Article
                PMC7987137 PMC7987137 7987137 nihpa1679841
                10.1038/s41584-020-0413-5
                7987137
                32393826
                1cd03072-1b18-4e70-82e0-5969935772ac
                History
                Categories
                Article

                Comments

                Comment on this article