Search for authorsSearch for similar articles
27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing.

      Cell
      DNA-Binding Proteins, metabolism, Endodeoxyribonucleases, Endonucleases, G2 Phase Cell Cycle Checkpoints, HEK293 Cells, HIV Infections, immunology, pathology, virology, HIV-1, HeLa Cells, Humans, Immunity, Innate, Interferon-gamma, Multiprotein Complexes, Recombinases, vpr Gene Products, Human Immunodeficiency Virus

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The HIV auxiliary protein Vpr potently blocks the cell cycle at the G2/M transition. Here, we show that G2/M arrest results from untimely activation of the structure-specific endonuclease (SSE) regulator SLX4 complex (SLX4com) by Vpr, a process that requires VPRBP-DDB1-CUL4 E3-ligase complex. Direct interaction of Vpr with SLX4 induced the recruitment of VPRBP and kinase-active PLK1, enhancing the cleavage of DNA by SLX4-associated MUS81-EME1 endonucleases. G2/M arrest-deficient Vpr alleles failed to interact with SLX4 or to induce recruitment of MUS81 and PLK1. Furthermore, knockdown of SLX4, MUS81, or EME1 inhibited Vpr-induced G2/M arrest. In addition, we show that the SLX4com is involved in suppressing spontaneous and HIV-1-mediated induction of type 1 interferon and establishment of antiviral responses. Thus, our work not only reveals the identity of the cellular factors required for Vpr-mediated G2/M arrest but also identifies the SLX4com as a regulator of innate immunity. Copyright © 2014 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article