36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vangl2-Regulated Polarisation of Second Heart Field-Derived Cells Is Required for Outflow Tract Lengthening during Cardiac Development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Planar cell polarity (PCP) is the mechanism by which cells orient themselves in the plane of an epithelium or during directed cell migration, and is regulated by a highly conserved signalling pathway. Mutations in the PCP gene Vangl2, as well as in other key components of the pathway, cause a spectrum of cardiac outflow tract defects. However, it is unclear why cells within the mesodermal heart tissue require PCP signalling. Using a new conditionally floxed allele we show that Vangl2 is required solely within the second heart field (SHF) to direct normal outflow tract lengthening, a process that is required for septation and normal alignment of the aorta and pulmonary trunk with the ventricular chambers. Analysis of a range of markers of polarised epithelial tissues showed that in the normal heart, undifferentiated SHF cells move from the dorsal pericardial wall into the distal outflow tract where they acquire an epithelial phenotype, before moving proximally where they differentiate into cardiomyocytes. Thus there is a transition zone in the distal outflow tract where SHF cells become more polarised, turn off progenitor markers and start to differentiate to cardiomyocytes. Membrane-bound Vangl2 marks the proximal extent of this transition zone and in the absence of Vangl2, the SHF-derived cells are abnormally polarised and disorganised. The consequent thickening, rather than lengthening, of the outflow wall leads to a shortened outflow tract. Premature down regulation of the SHF-progenitor marker Isl1 in the mutants, and accompanied premature differentiation to cardiomyocytes, suggests that the organisation of the cells within the transition zone is important for maintaining the undifferentiated phenotype. Thus, Vangl2-regulated polarisation and subsequent acquisition of an epithelial phenotype is essential to lengthen the tubular outflow vessel, a process that is essential for on-going cardiac morphogenesis.

          Author Summary

          Congenital heart defects are common, affecting almost 1% of all live births. Many of these affect the outflow region, where the aorta and pulmonary trunk connect with the main ventricular chambers. Congenital heart defects arise from disruption of normal developmental processes and can be modelled in mice. Thus, studying normal development, together with mouse mutants that develop heart malformations, should shed light on why these common anomalies arise. We have studied cardiac development in a mouse mutant for the Vangl2 gene, a key component of the planar cell polarity (PCP) pathway. This pathway controls the orientations of cells in epithelia and during directional cell migration. Here, we show that PCP signalling is required by cells derived from the second heart field, which forms the outflow tract walls. We show that in the absence of Vangl2, the cells within the distal outflow tract walls are non-polarised and disorganised. As a consequence the outflow tract is shortened and does not align properly with the ventricles. Thus, we show why disruption of a key PCP gene leads to outflow tract malformations. This is important for understanding heart development, but also more generally for understanding how PCP signalling regulates growth of tubular structures.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Widespread recombinase expression using FLPeR (flipper) mice.

          As conditional genetic strategies advance, the need for multiple site-specific recombinase systems has emerged. To meet this need in part, we have targeted the constitutive ROSA26 locus to create a mouse strain with generalized expression of the enhanced version of the site-specific recombinase FLP (FLPe). This strain is designated FLPeR ("flipper"). Using this strain, extensive target gene recombination can be achieved in most tissue types, including cells of the developing germ line. FLPeR mice therefore serve two important functions: as a source of many different FLPe-expressing primary cell lines and as a deleter strain. Moreover, because the FLPeR mouse is a 129-derived strain, a 129 genetic background can be preserved when crossed to most ES cell-derived mice. This enables conditional genetic alterations to be maintained on a standard background, a feature important for obtaining reproducible results and genetically defined controls.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of planar polarity in animal development.

            Planar polarity describes the coordinated polarisation of cells or structures in the plane of a tissue. The patterning mechanisms that underlie planar polarity are well characterised in Drosophila, where many events are regulated by two pathways: the 'core' planar polarity complex and the Fat/Dachsous system. Components of both pathways also function in vertebrates and are implicated in diverse morphogenetic processes, some of which self-evidently involve planar polarisation and some of which do not. Here, we review the molecular mechanisms and cellular consequences of planar polarisation in diverse contexts, seeking to identify the common principles across the animal kingdom.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm.

              Development of the arterial pole of the heart is a critical step in cardiogenesis, yet its embryological origin remains obscure. We have analyzed a transgenic mouse line in which beta-galactosidase activity is observed in the embryonic right ventricle and outflow tract of the heart and in contiguous splanchnic and pharyngeal mesoderm. The nlacZ transgene has integrated upstream of the fibroblast growth factor 10 (Fgf10) gene and comparison with the expression pattern of Fgf10 in pharyngeal mesoderm indicates transgene control by Fgf10 regulatory sequences. Dil labeling shows a progressive movement of cells from the pharyngeal arch region into the growing heart tube between embryonic days 8.25 and 10.5. These data suggest that arterial pole myocardium originates outside the classical heart field.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2014
                18 December 2014
                : 10
                : 12
                : e1004871
                Affiliations
                [1 ]Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
                [2 ]Leukocyte Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
                [3 ]Mammalian Genetics Unit, MRC Harwell, Oxfordshire, United Kingdom
                Harvard Medical School, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BC DJH. Performed the experiments: SAR VS LE HJR HMP HFR. Analyzed the data: SAR LE BC DJH. Contributed reagents/materials/analysis tools: DJH CD. Wrote the paper: SAR BC DJH.

                Article
                PGENETICS-D-14-00322
                10.1371/journal.pgen.1004871
                4270488
                25521757
                0056ce74-bca9-47cd-b48e-e047ef7c4942
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 February 2014
                : 3 November 2014
                Page count
                Pages: 16
                Funding
                The study was funded by the British Heart Foundation (PG/11/76/29108, RG/07/007 and RG/12/15/29935). Funding for the antibody generation was provided by MRC Harwell core unit funds to CD. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Developmental Biology

                Genetics
                Genetics

                Comments

                Comment on this article