4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic Effect of Chitosan Nanoparticles and Metronidazole in Treatment of Experimentally Giardiasis Infected Hamsters

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          The present study aimed to assess the therapeutic effect of chitosan nanoparticles and metronidazole against Giardia lamblia as well as evaluate the efficacy of loading metronidazole on chitosan nanoparticles.

          Methods:

          This study was carried out at medical Parasitology Department, Faculty of Medicine, Zagazig University and Theodor Bilharz Research institute (TBRI) from February 2019 to February 2020 on 45 hamsters. They were divided into 5 groups 9 hamsters each: Group A non-infected hamsters, Group B infected control group, Group C, D and E infected with G. lamblia and treated with Chitosan nanoparticles (CsNPs), metronidazole (MTZ) and metronidazole-loaded chitosan nanoparticles (MTZ-CsNPs) respectively.

          Results:

          The highest percentage of reduction in the Giardia cyst and trophozoite counts were in group that received MTZ-CsNPs (94.69%, 94.29%). Lower percentages of reduction were recorded for MTZ treated group (90.15%, 89.52%) and CsNPs treated group (63.64%, 75.24%). Histopathological examination showed marked healing of intestinal mucosa after treatment with MTZ-CsNPs.

          Conclusion:

          CsNPs showed a therapeutic effect against Giardia infection in hamsters. Loading of metronidazole on chitosan nanoparticles enhanced therapeutic effect of both CsNPs as well as metronidazole.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Preparation and antibacterial activity of chitosan nanoparticles.

          Chitosan nanoparticles, such as those prepared in this study, may exhibit potential antibacterial activity as their unique character. The purpose of this study was to evaluate the in vitro antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against various microorganisms. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. Copper ions were adsorbed onto the chitosan nanoparticles mainly by ion-exchange resins and surface chelation to form copper-loaded nanoparticles. The physicochemical properties of the nanoparticles were determined by size and zeta potential analysis, atomic force microscopy (AFM), FTIR analysis, and XRD pattern. The antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against E. coli, S. choleraesuis, S. typhimurium, and S. aureus was evaluated by calculation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results show that chitosan nanoparticles and copper-loaded nanoparticles could inhibit the growth of various bacteria tested. Their MIC values were less than 0.25 microg/mL, and the MBC values of nanoparticles reached 1 microg/mL. AFM revealed that the exposure of S. choleraesuis to the chitosan nanoparticles led to the disruption of cell membranes and the leakage of cytoplasm.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biology of Giardia lamblia.

            R D Adam (2001)
            Giardia lamblia is a common cause of diarrhea in humans and other mammals throughout the world. It can be distinguished from other Giardia species by light or electron microscopy. The two major genotypes of G. lamblia that infect humans are so different genetically and biologically that they may warrant separate species or subspecies designations. Trophozoites have nuclei and a well-developed cytoskeleton but lack mitochondria, peroxisomes, and the components of oxidative phosphorylation. They have an endomembrane system with at least some characteristics of the Golgi complex and encoplasmic reticulum, which becomes more extensive in encysting organisms. The primitive nature of the organelles and metabolism, as well as small-subunit rRNA phylogeny, has led to the proposal that Giardia spp. are among the most primitive eukaryotes. G. lamblia probably has a ploidy of 4 and a genome size of approximately 10 to 12 Mb divided among five chromosomes. Most genes have short 5' and 3' untranslated regions and promoter regions that are near the initiation codon. Trophozoites exhibit antigenic variation of an extensive repertoire of cysteine-rich variant-specific surface proteins. Expression is allele specific, and changes in expression from one vsp gene to another have not been associated with sequence alterations or gene rearrangements. The Giardia genome project promises to greatly increase our understanding of this interesting and enigmatic organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review on chitosan and its nanocomposites in drug delivery.

              Chitosan the second most abundant next to cellulose, naturally occurring amino polysaccharide, derived as a deacetylated form of chitin. Its nontoxic, biocompatible, antibacterial and biodegradable properties have led to significant research towards biomedical and pharmaceutical applications, such as drug delivery, tissue engineering, wound-healing dressing etc. The primary amine group in chitosan are responsible for its various properties such as cationic nature, controlled drug release, muco-adhesion, in situ gelation, antimicrobial, permeation enhancement etc. This review discusses the various forms of chitosan materials such as beads, films, microspheres, nanoparticles, nanofibers, hydrogels, nanocomposites, etc. as drug delivery device and attempted to report the vast literature available on chitosan based materials in drug delivery applications. Moreover, chitosan derivatives and chitosan nanocomposites with different nanofillers and its application in drug delivery have also been reviewed.
                Bookmark

                Author and article information

                Journal
                Iran J Parasitol
                Iran J Parasitol
                IJPA
                IJPA
                Iranian Journal of Parasitology
                Tehran University of Medical Sciences
                1735-7020
                2008-238X
                Jan-Mar 2021
                : 16
                : 1
                : 32-42
                Affiliations
                [1. ] Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
                [2. ] Department of Medical Parasitology, Faculty of Medicine, Kafr-Elshiekh University, Kafr-Elshiekh, Egypt
                Author notes
                [* ] Correspondence Email: shery.redberry@ 123456gmail.com
                Article
                IJPA-16-32
                10.18502/ijpa.v16i1.5509
                7988670
                33786045
                016bf2a6-78c9-43ce-80cf-ffb4221e5ab6
                Copyright © 2021 El-Gendy et al. Published by Tehran University of Medical Sciences

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license ( https://creativecommons.org/licenses/by-nc/4.0/). Non-commercial uses of the work are permitted, provided the original work is properly cited.

                History
                : 05 April 2020
                : 16 June 2020
                Categories
                Original Article

                Parasitology
                chitosan nanoparticles,metronidazole,giardia lamblia,metronidazole-loaded chitosan nanoparticles

                Comments

                Comment on this article