1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Myocardial ischaemia in children with isolated ventricular non-compaction.

      European Heart Journal
      Adolescent, Child, Coronary Circulation, Female, Heart, radionuclide imaging, Heart Diseases, congenital, physiopathology, ultrasonography, Heart Ventricles, Humans, Magnetic Resonance Imaging, Male, Myocardium, pathology, Regional Blood Flow, Tomography, Emission-Computed, Ventricular Dysfunction, etiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Isolated ventricular non-compaction is a rare congenital cardiomyopathy with a high morbidity and mortality due to malignant arrhythmias and pump failure. Areas affected by non-compaction are characterized by increased trabecularization and deep inter-trabecular spaces. We hypothesized perfusion defects in these areas and performed positron emission tomography to evaluate the myocardial perfusion in non-compacted areas. Five children (age 10-14 years) with isolated ventricular non-compaction underwent positron emission tomography using N-13-ammonia as flow marker and intravenous dipyridamole for stress testing. Myocardial blood flow was quantified using the positron emission tomography time-activity curves in non-compacted areas and normal myocardium, which were diagnosed by echocardiography, magnetic resonance imaging, and angiography. Coronary angiography, performed in two children with extensive forms of left ventricular non-compaction, demonstrated normal coronary arteries. Myocardial blood flow measurements at rest and after dipyridamole application demonstrated 16-33% and 32-57% perfusion impairment, respectively, in non-compacted areas compared to normal myocardium. Areas of restricted myocardial perfusion corresponded well to the non-compacted areas, defined echographically and by magnetic resonance imaging. Positron emission tomography demonstrates restricted myocardial perfusion and decreased flow reserve in areas of ventricular non-compaction in children. The myocardial perfusion defects in non-compacted areas may be the cause of myocardial damage and possibly form the basis of arrhythmias and pump failure. Copyright 1999 The European Society of Cardiology.

          Related collections

          Author and article information

          Comments

          Comment on this article