7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mesoporous MoO3- x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.

          The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e(g) symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an e(g) occupancy close to unity, with high covalency of transition metal-oxygen bonds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting.

            Finding an ideal model for disclosing the role of oxygen vacancies in photocatalysis remains a huge challenge. Herein, O-vacancies confined in atomically thin sheets is proposed as an excellent platform to study the O-vacancy-photocatalysis relationship. As an example, O-vacancy-rich/-poor 5-atom-thick In2O3 porous sheets are first synthesized via a mesoscopic-assembly fast-heating strategy, taking advantage of an artificial hexagonal mesostructured In-oleate complex. Theoretical/experimental results reveal that the O-vacancies endow 5-atom-thick In2O3 sheets with a new donor level and increased states of density, hence narrowing the band gap from the UV to visible regime and improving the carrier separation efficiency. As expected, the O-vacancy-rich ultrathin In2O3 porous sheets-based photoelectrode exhibits a visible-light photocurrent of 1.73 mA/cm(2), over 2.5 and 15 times larger than that of the O-vacancy-poor ultrathin In2O3 porous sheets- and bulk In2O3-based photoelectrodes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials.

              We synthesize vertically oriented core-shell nanowires with substoichiometric MoO(3) cores of ∼20-50 nm and conformal MoS(2) shells of ∼2-5 nm. The core-shell architecture, produced by low-temperature sulfidization, is designed to utilize the best properties of each component material while mitigating their deficiencies. The substoichiometric MoO(3) core provides a high aspect ratio foundation and enables facile charge transport, while the conformal MoS(2) shell provides excellent catalytic activity and protection against corrosion in strong acids.
                Bookmark

                Author and article information

                Journal
                Advanced Energy Materials
                Adv. Energy Mater.
                Wiley
                16146832
                August 2016
                August 2016
                June 15 2016
                : 6
                : 16
                : 1600528
                Affiliations
                [1 ]Institute of Materials Science, U-3136; University of Connecticut; Storrs CT 06269 USA
                [2 ]Department of Chemistry, U-3060; University of Connecticut; Storrs CT 06269-3060 USA
                [3 ]Department of Chemistry; Tanta University; Tanta 31527 Egypt
                Article
                10.1002/aenm.201600528
                020ef693-fca7-4c80-ba2c-6cd1de04ddca
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article