25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Kinesin KIFC1 actively transports bare double-stranded DNA

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During the past years, exogenous DNA molecules have been used in gene and molecular therapy. At present, it is not known how these DNA molecules reach the cell nucleus. We used an in cell single-molecule approach to observe the motion of exogenous short DNA molecules in the cytoplasm of eukaryotic cells. Our observations suggest an active transport of the DNA along the cytoskeleton filaments. We used an in vitro motility assay, in which the motion of single-DNA molecules along cytoskeleton filaments in cell extracts is monitored; we demonstrate that microtubule-associated motors are involved in this transport. Precipitation of DNA-bound proteins and mass spectrometry analyses reveal the preferential binding of the kinesin KIFC1 on DNA. Cell extract depletion of kinesin KIFC1 significantly decreases DNA motion, confirming the active implication of this molecular motor in the intracellular DNA transport.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Kinesin superfamily motor proteins and intracellular transport.

          Intracellular transport is fundamental for cellular function, survival and morphogenesis. Kinesin superfamily proteins (also known as KIFs) are important molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs. The mechanisms by which different kinesins recognize and bind to specific cargos, as well as how kinesins unload cargo and determine the direction of transport, have now been identified. Furthermore, recent molecular genetic experiments have uncovered important and unexpected roles for kinesins in the regulation of such physiological processes as higher brain function, tumour suppression and developmental patterning. These findings open exciting new areas of kinesin research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes.

            Although the highly dynamic and mosaic organization of the plasma membrane is well-recognized, depicting a resolved, global view of this organization remains challenging. We present an analytical single-particle tracking (SPT) method and tool, multiple-target tracing (MTT), that takes advantage of the high spatial resolution provided by single-fluorophore sensitivity. MTT can be used to generate dynamic maps at high densities of tracked particles, thereby providing global representation of molecular dynamics in cell membranes. Deflation by subtracting detected peaks allows detection of lower-intensity peaks. We exhaustively detected particles using MTT, with performance reaching theoretical limits, and then reconnected trajectories integrating the statistical information from past trajectories. We demonstrate the potential of this method by applying it to the epidermal growth factor receptor (EGFR) labeled with quantum dots (Qdots), in the plasma membrane of live cells. We anticipate the use of MTT to explore molecular dynamics and interactions at the cell membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking.

              Semiconductor quantum dots (QDs) are nanometer-sized fluorescent probes suitable for advanced biological imaging. We used QDs to track individual glycine receptors (GlyRs) and analyze their lateral dynamics in the neuronal membrane of living cells for periods ranging from milliseconds to minutes. We characterized multiple diffusion domains in relation to the synaptic, perisynaptic, or extrasynaptic GlyR localization. The entry of GlyRs into the synapse by diffusion was observed and further confirmed by electron microscopy imaging of QD-tagged receptors.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                May 2013
                29 March 2013
                29 March 2013
                : 41
                : 9
                : 4926-4937
                Affiliations
                1Physico-Chimie-Curie/UMR168 Institut Curie, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75231 Paris, France, 2Immunity and Cancer/U932 Inserm, Institut Curie, Paris 75005, France, 3Structure and Membrane Compartments /CNRS - UMR144, Institut Curie, Paris 75005, France, 4Laboratory of Proteomic Mass Spectrometry, Institut Curie, Paris 75005, France and 5Normal and Pathological Signaling/UMR3347, Institut Curie, Paris 75005, France
                Author notes
                *To whom correspondence should be addressed. Tel: +33 1 56 24 64 68; Fax: +33 1 40 51 06 36; Email: giovanni.cappello@ 123456curie.fr
                Article
                gkt204
                10.1093/nar/gkt204
                3643607
                23543461
                03e565c3-b8aa-427d-baf9-603fb72fd37d
                © The Author(s) 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 November 2012
                : 5 March 2013
                : 6 March 2013
                Page count
                Pages: 12
                Categories
                Genome Integrity, Repair and Replication

                Genetics
                Genetics

                Comments

                Comment on this article