2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alveolar bone is the thickened ridge of jaw bone that supports teeth. It is subject to constant occlusal force and pathogens invasion, and is therefore under active bone remodeling and immunomodulation. Alveolar bone holds a distinct niche from long bone considering their different developmental origin and postnatal remodeling pattern. However, a systematic explanation of alveolar bone at single-cell level is still lacking. Here, we construct a single-cell atlas of mouse mandibular alveolar bone through single-cell RNA sequencing (scRNA-seq). A more active immune microenvironment is identified in alveolar bone, with a higher proportion of mature immune cells than in long bone. Among all immune cell populations, the monocyte/macrophage subpopulation most actively interacts with mesenchymal stem cells (MSCs) subpopulation. Alveolar bone monocytes/macrophages express a higher level of Oncostatin M (Osm) compared to long bone, which promotes osteogenic differentiation and inhibits adipogenic differentiation of MSCs. In summary, our study reveals a unique immune microenvironment of alveolar bone, which may provide a more precise immune-modulatory target for therapeutic treatment of oral diseases.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes

          Cell-cell communication mediated by ligand-receptor complexes is critical to coordinating diverse biological processes, such as development, differentiation and inflammation. To investigate how the context-dependent crosstalk of different cell types enables physiological processes to proceed, we developed CellPhoneDB, a novel repository of ligands, receptors and their interactions. In contrast to other repositories, our database takes into account the subunit architecture of both ligands and receptors, representing heteromeric complexes accurately. We integrated our resource with a statistical framework that predicts enriched cellular interactions between two cell types from single-cell transcriptomics data. Here, we outline the structure and content of our repository, provide procedures for inferring cell-cell communication networks from single-cell RNA sequencing data and present a practical step-by-step guide to help implement the protocol. CellPhoneDB v.2.0 is an updated version of our resource that incorporates additional functionalities to enable users to introduce new interacting molecules and reduces the time and resources needed to interrogate large datasets. CellPhoneDB v.2.0 is publicly available, both as code and as a user-friendly web interface; it can be used by both experts and researchers with little experience in computational genomics. In our protocol, we demonstrate how to evaluate meaningful biological interactions with CellPhoneDB v.2.0 using published datasets. This protocol typically takes ~2 h to complete, from installation to statistical analysis and visualization, for a dataset of ~10 GB, 10,000 cells and 19 cell types, and using five threads.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The oral microbiota: dynamic communities and host interactions

            The dynamic and polymicrobial oral microbiome is a direct precursor of diseases such as dental caries and periodontitis, two of the most prevalent microbially induced disorders worldwide. Distinct microenvironments at oral barriers harbour unique microbial communities, which are regulated through sophisticated signalling systems and by host and environmental factors. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feedforward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis. In this Review, we discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional regulation of macrophage polarization: enabling diversity with identity.

              In terms of both phenotype and function, macrophages have remarkable heterogeneity, which reflects the specialization of tissue-resident macrophages in microenvironments as different as liver, brain and bone. Also, marked changes in the activity and gene expression programmes of macrophages can occur when they come into contact with invading microorganisms or injured tissues. Therefore, the macrophage lineage includes a remarkable diversity of cells with different functions and functional states that are specified by a complex interplay between microenvironmental signals and a hardwired differentiation programme that determines macrophage identity. In this Review, we summarize the current knowledge of transcriptional and chromatin-mediated control of macrophage polarization in physiology and disease.
                Bookmark

                Author and article information

                Contributors
                yuanquan@scu.edu.cn
                Journal
                Bone Res
                Bone Res
                Bone Research
                Nature Publishing Group UK (London )
                2095-4700
                2095-6231
                15 March 2021
                15 March 2021
                2021
                : 9
                : 17
                Affiliations
                [1 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, , Sichuan University, ; Chengdu, China
                [2 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Department of Oral Implantology, West China Hospital of Stomatology, , Sichuan University, ; Chengdu, China
                [3 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, , Sichuan University, ; Chengdu, China
                Article
                141
                10.1038/s41413-021-00141-5
                7960742
                33723232
                052e1501-4c5d-4589-a68a-f437d4758829
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 December 2020
                : 18 January 2021
                : 1 February 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                bone,bone quality and biomechanics
                bone, bone quality and biomechanics

                Comments

                Comment on this article