8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      AMPK in the brain: its roles in energy balance and neuroprotection

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adenosine monophosphate‐activated protein kinase (AMPK) senses metabolic stress and integrates diverse physiological signals to restore energy balance. Multiple functions are indicated for AMPK in the CNS. While all neurons sense their own energy status, some integrate neuro‐humoral signals to assess organismal energy balance. A variety of disease states may involve AMPK, so determining the underlying mechanisms is important. We review the impact of altered AMPK activity under physiological (hunger, satiety) and pathophysiological (stroke) conditions, as well as therapeutic manipulations of AMPK that may improve energy balance.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy.

          D Hardie (2007)
          The SNF1/AMP-activated protein kinase (AMPK) family maintains the balance between ATP production and consumption in all eukaryotic cells. The kinases are heterotrimers that comprise a catalytic subunit and regulatory subunits that sense cellular energy levels. When energy status is compromised, the system activates catabolic pathways and switches off protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. Surprisingly, recent results indicate that the AMPK system is also important in functions that go beyond the regulation of energy homeostasis, such as the maintenance of cell polarity in epithelial cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AMPK phosphorylation of raptor mediates a metabolic checkpoint.

            AMPK is a highly conserved sensor of cellular energy status that is activated under conditions of low intracellular ATP. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of the rapamycin-sensitive mTOR (mTORC1) pathway. AMPK phosphorylation of the TSC2 tumor suppressor contributes to suppression of mTORC1; however, TSC2-deficient cells remain responsive to energy stress. Using a proteomic and bioinformatics approach, we sought to identify additional substrates of AMPK that mediate its effects on growth control. We report here that AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor. The phosphorylation of raptor by AMPK is required for the inhibition of mTORC1 and cell-cycle arrest induced by energy stress. These findings uncover a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.

              Replicative cell division is an energetically demanding process that can be executed only if cells have sufficient metabolic resources to support a doubling of cell mass. Here we show that proliferating mammalian cells have a cell-cycle checkpoint that responds to glucose availability. The glucose-dependent checkpoint occurs at the G(1)/S boundary and is regulated by AMP-activated protein kinase (AMPK). This cell-cycle arrest occurs despite continued amino acid availability and active mTOR. AMPK activation induces phosphorylation of p53 on serine 15, and this phosphorylation is required to initiate AMPK-dependent cell-cycle arrest. AMPK-induced p53 activation promotes cellular survival in response to glucose deprivation, and cells that have undergone a p53-dependent metabolic arrest can rapidly reenter the cell cycle upon glucose restoration. However, persistent activation of AMPK leads to accelerated p53-dependent cellular senescence. Thus, AMPK is a cell-intrinsic regulator of the cell cycle that coordinates cellular proliferation with carbon source availability.
                Bookmark

                Author and article information

                Journal
                Journal of Neurochemistry
                Journal of Neurochemistry
                Wiley
                0022-3042
                1471-4159
                May 2009
                April 07 2009
                May 2009
                : 109
                : s1
                : 17-23
                Article
                10.1111/j.1471-4159.2009.05916.x
                2925428
                19393004
                05316cbb-7910-4a06-b301-11eecba2a9af
                © 2009

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article