37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contrasting Paternal and Maternal Genetic Histories of Thai and Lao Populations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human demographic history of Mainland Southeast Asia (MSEA) has not been well studied; in particular, there have been very few sequence-based studies of variation in the male-specific portions of the Y chromosome (MSY). Here, we report new MSY sequences of ∼2.3 mB from 914 males and combine these with previous data for a total of 928 MSY sequences belonging to 59 populations from Thailand and Laos who speak languages belonging to three major Mainland Southeast Asia families: Austroasiatic, Tai-Kadai, and Sino-Tibetan. Among the 92 MSY haplogroups, two main MSY lineages (O1b1a1a* [O-M95*] and O2a* [O-M324*]) contribute substantially to the paternal genetic makeup of Thailand and Laos. We also analyze complete mitochondrial DNA genome sequences published previously from the same groups and find contrasting pattern of male and female genetic variation and demographic expansions, especially for the hill tribes, Mon, and some major Thai groups. In particular, we detect an effect of postmarital residence pattern on genetic diversity in patrilocal versus matrilocal groups. Additionally, both male and female demographic expansions were observed during the early Mesolithic (∼10 ka), with two later major male-specific expansions during the Neolithic period (∼4–5 ka) and the Bronze/Iron Age (∼2.0–2.5 ka). These two later expansions are characteristic of the modern Austroasiatic and Tai-Kadai groups, respectively, consistent with recent ancient DNA studies. We simulate MSY data based on three demographic models (continuous migration, demic diffusion, and cultural diffusion) of major Thai groups and find different results from mitochondrial DNA simulations, supporting contrasting male and female genetic histories.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty.

          Recent developments in marginal likelihood estimation for model selection in the field of Bayesian phylogenetics and molecular evolution have emphasized the poor performance of the harmonic mean estimator (HME). Although these studies have shown the merits of new approaches applied to standard normally distributed examples and small real-world data sets, not much is currently known concerning the performance and computational issues of these methods when fitting complex evolutionary and population genetic models to empirical real-world data sets. Further, these approaches have not yet seen widespread application in the field due to the lack of implementations of these computationally demanding techniques in commonly used phylogenetic packages. We here investigate the performance of some of these new marginal likelihood estimators, specifically, path sampling (PS) and stepping-stone (SS) sampling for comparing models of demographic change and relaxed molecular clocks, using synthetic data and real-world examples for which unexpected inferences were made using the HME. Given the drastically increased computational demands of PS and SS sampling, we also investigate a posterior simulation-based analogue of Akaike's information criterion (AIC) through Markov chain Monte Carlo (MCMC), a model comparison approach that shares with the HME the appealing feature of having a low computational overhead over the original MCMC analysis. We confirm that the HME systematically overestimates the marginal likelihood and fails to yield reliable model classification and show that the AICM performs better and may be a useful initial evaluation of model choice but that it is also, to a lesser degree, unreliable. We show that PS and SS sampling substantially outperform these estimators and adjust the conclusions made concerning previous analyses for the three real-world data sets that we reanalyzed. The methods used in this article are now available in BEAST, a powerful user-friendly software package to perform Bayesian evolutionary analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform

            Due to the increasing throughput of current DNA sequencing instruments, sample multiplexing is necessary for making economical use of available sequencing capacities. A widely used multiplexing strategy for the Illumina Genome Analyzer utilizes sample-specific indexes, which are embedded in one of the library adapters. However, this and similar multiplex approaches come with a risk of sample misidentification. By introducing indexes into both library adapters (double indexing), we have developed a method that reveals the rate of sample misidentification within current multiplex sequencing experiments. With ~0.3% these rates are orders of magnitude higher than expected and may severely confound applications in cancer genomics and other fields requiring accurate detection of rare variants. We identified the occurrence of mixed clusters on the flow as the predominant source of error. The accuracy of sample identification is further impaired if indexed oligonucleotides are cross-contaminated or if indexed libraries are amplified in bulk. Double-indexing eliminates these problems and increases both the scope and accuracy of multiplex sequencing on the Illumina platform.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A recent bottleneck of Y chromosome diversity coincides with a global change in culture

              It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50–100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192–307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47–52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                July 2019
                12 April 2019
                12 April 2019
                : 36
                : 7
                : 1490-1506
                Affiliations
                [1 ]Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
                [2 ]Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
                [3 ]Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
                [4 ]Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
                [5 ]Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
                [6 ]Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
                Author notes
                Corresponding authors: E-mails: wibhu@ 123456kku.ac.th ; stoneking@ 123456eva.mpg.de .
                Article
                msz083
                10.1093/molbev/msz083
                6573475
                30980085
                06984cf4-3cb7-49fc-97c9-c1b69deee781
                © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 17
                Funding
                Funded by: Thailand Research Fund 10.13039/501100004396
                Award ID: RSA6180058
                Funded by: Khon Kaen University 10.13039/501100004071
                Award ID: 6100100
                Funded by: KKU’s Thai Visiting Scholar 2018
                Funded by: Research and Academic Affairs Promotion Fund
                Funded by: Faculty of Science
                Funded by: Khon Kaen University 10.13039/501100004071
                Funded by: Naresuan University 10.13039/501100004944
                Award ID: R2561B029
                Funded by: Chiang Mai University 10.13039/501100002842
                Categories
                Discoveries

                Molecular biology
                y chromosome,mtdna,austroasiatic,tai-kadai,sino-tibetan
                Molecular biology
                y chromosome, mtdna, austroasiatic, tai-kadai, sino-tibetan

                Comments

                Comment on this article