27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The effects of preservatives and temperatures on arachnid DNA

      , , , ,
      Invertebrate Systematics
      CSIRO Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          A combined molecular approach to phylogeny of the jumping spider subfamily dendryphantinae (araneae: salticidae).

          Four gene regions were sequenced for 30 species of jumping spiders, most from the subfamily Dendryphantinae, to investigate their molecular phylogeny and evolution. These are three regions from the mitochondria (ca. 560 bp of 16S plus adjacent tRNA, 1047 bp of cytochrome oxidase 1 (CO1), and 414 bp of NADH1 (ND1) and one region from the nuclear genome (ca. 750 bp of 28S). Parsimony and likelihood analyses of these gene regions separately and together support the monophyly of the dendryphantines as delimited previously by morphological characters. A group of elongate-bodied genera are placed as basal among the dendryphantines, and previously proposed relationships of Poultonella, Paraphidippus, and Sassacus vitis are confirmed. Comparison of overall rates of molecular evolution indicates striking differences across the gene regions, with highest divergence in ND1, CO1, 16S, and 28S in decreasing order. All four regions are characterized by both within- and among-site rate variation. Phylogenetic results from CO1 conflict conspicuously with phylogenetic results from the other genes and morphological data. Attempts to account for potential sources of this conflict (e.g., accommodating biased base composition, high homoplasy, within- and among-site rate variation, etc.) are largely unsuccessful. Copyright 2001 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes.

            The family Theridiidae is one of the most diverse assemblages of spiders, from both a morphological and ecological point of view. The family includes some of the very few cases of sociality reported in spiders, in addition to bizarre foraging behaviors such as kleptoparasitism and araneophagy, and highly diverse web architecture. Theridiids are one of the seven largest families in the Araneae, with about 2200 species described. However, this species diversity is currently grouped in half the number of genera described for other spider families of similar species richness. Recent cladistic analyses of morphological data have provided an undeniable advance in identifying the closest relatives of the theridiids as well as establishing the family's monophyly. Nevertheless, the comb-footed spiders remain an assemblage of poorly defined genera, among which hypothesized relationships have yet to be examined thoroughly. Providing a robust cladistic structure for the Theridiidae is an essential step towards the clarification of the taxonomy of the group and the interpretation of the evolution of the diverse traits found in the family. Here we present results of a molecular phylogenetic analysis of a broad taxonomic sample of the family (40 taxa in 33 of the 79 currently recognized genera) and representatives of nine additional araneoid families, using approximately 2.5kb corresponding to fragments of three nuclear genes (Histone 3, 18SrDNA, and 28SrDNA) and two mitochondrial genes (16SrDNA and CoI). Several methods for incorporating indel information into the phylogenetic analysis are explored, and partition support for the different clades and sensitivity of the results to different assumptions of the analysis are examined as well. Our results marginally support theridiid monophyly, although the phylogenetic structure of the outgroup is unstable and largely contradicts current phylogenetic hypotheses based on morphological data. Several groups of theridiids receive strong support in most of the analyses: latrodectines, argyrodines, hadrotarsines, a revised version of spintharines and two clades including all theridiids without trace of a colulus and those without colular setae. However, the interrelationships of these clades are sensitive to data perturbations and changes in the analysis assumptions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae:Nesticidae:Nesticus).

              This paper focuses on the relationship between population genetic structure and speciation mechanisms in a monophyletic species group of Appalachian cave spiders (Nesticus). Using mtDNA sequence data gathered from 256 individuals, I analyzed patterns of genetic variation within and between populations for three pairs of closely related sister species. Each sister-pair comparison involves taxa with differing distributional and ecological attributes; if these ecological attributes are reflected in basic demographic differences, then speciation might proceed differently across these sister taxa comparisons. Both frequency-based and gene tree analyses reveal that the genetic structure of the Nesticus species studied is characterized by similar and essentially complete population subdivision, regardless of differences in general ecology. These findings contrast with results of prior genetic studies of cave-dwelling arthropods that have typically revealed variation in population structure corresponding to differences in general ecology. Species fragmentation through both extrinsic and intrinsic evolutionary forces has resulted in discrete, perhaps independent, populations within morphologically defined species. Large sequence divergence values observed between populations suggest that this independence may extend well into the past. These patterns of mtDNA genealogical structure and divergence imply that species as morphological lineages are currently more inclusive than basal evolutionary or phylogenetic units, a suggestion that has important implications for the study of speciation mechanisms.
                Bookmark

                Author and article information

                Journal
                Invertebrate Systematics
                Invert. Systematics
                CSIRO Publishing
                1445-5226
                2005
                2005
                : 19
                : 2
                : 99
                Article
                10.1071/IS04039
                06e8578d-cf2f-497c-be08-7be46da7527a
                © 2005
                History

                Comments

                Comment on this article