21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The plasmid-mediated evolution of the mycobacterial ESX (Type VII) secretion systems

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The genome of Mycobacterium tuberculosis contains five copies of the ESX gene cluster, each encoding a dedicated protein secretion system. These ESX secretion systems have been defined as a novel Type VII secretion machinery, responsible for the secretion of proteins across the characteristic outer mycomembrane of the mycobacteria. Some of these secretion systems are involved in virulence and survival in M. tuberculosis; however they are also present in other non-pathogenic mycobacteria, and have been identified in some non-mycobacterial actinomycetes. Three components of the ESX gene cluster have also been found clustered in some gram positive monoderm organisms and are predicted to have preceded the ESX gene cluster.

          Results

          This study used in silico and phylogenetic analyses to describe the evolution of the ESX gene cluster from the WXG-FtsK cluster of monoderm bacteria to the five ESX clusters present in M. tuberculosis and other slow-growing mycobacteria. The ancestral gene cluster, ESX-4, was identified in several nonmycomembrane producing actinobacteria as well as the mycomembrane-containing Corynebacteriales in which the ESX cluster began to evolve and diversify. A novel ESX gene cluster, ESX-4 EVOL, was identified in some non-mycobacterial actinomycetes and M. abscessus subsp. bolletii. ESX-4 EVOL contains all of the conserved components of the ESX gene cluster and appears to be a precursor of the mycobacterial ESX duplications. Between two and seven ESX gene clusters were identified in each mycobacterial species, with ESX-2 and ESX-5 specifically associated with the slow growers. The order of ESX duplication in the mycobacteria is redefined as ESX-4, ESX-3, ESX-1 and then ESX-2 and ESX-5. Plasmid-encoded precursor ESX gene clusters were identified for each of the genomic ESX-3, -1, -2 and -5 gene clusters, suggesting a novel plasmid-mediated mechanism of ESX duplication and evolution.

          Conclusions

          The influence of the various ESX gene clusters on vital biological and virulence-related functions has clearly influenced the diversification and success of the various mycobacterial species, and their evolution from the non-pathogenic fast-growing saprophytic to the slow-growing pathogenic organisms.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12862-016-0631-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          Precision Farming: Technologies and Information as Risk-Reduction Tools

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes required for mycobacterial growth defined by high density mutagenesis.

            Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of protein coding regions by database similarity search.

              Sequence similarity between a translated nucleotide sequence and a known biological protein can provide strong evidence for the presence of a homologous coding region, even between distantly related genes. The computer program BLASTX performed conceptual translation of a nucleotide query sequence followed by a protein database search in one programmatic step. We characterized the sensitivity of BLASTX recognition to the presence of substitution, insertion and deletion errors in the query sequence and to sequence divergence. Reading frames were reliably identified in the presence of 1% query errors, a rate that is typical for primary sequence data. BLASTX is appropriate for use in moderate and large scale sequencing projects at the earliest opportunity, when the data are most prone to containing errors.
                Bookmark

                Author and article information

                Contributors
                +27-21-9384009 , maen@sun.ac.za
                rw1@sun.ac.za
                ssampson@sun.ac.za
                pvh@sun.ac.za
                ngvp@sun.ac.za
                Journal
                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central (London )
                1471-2148
                15 March 2016
                15 March 2016
                2016
                : 16
                : 62
                Affiliations
                Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Molecular and Cellular Biology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
                Author information
                http://orcid.org/0000-0002-3880-8203
                Article
                631
                10.1186/s12862-016-0631-2
                4791881
                26979252
                085e88b7-ec30-40b7-a593-312f002b4e94
                © Newton-Foot et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 November 2015
                : 6 March 2016
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Evolutionary Biology
                esx,esat-6,evolution,mycobacterium,plasmid,type vii secretion system
                Evolutionary Biology
                esx, esat-6, evolution, mycobacterium, plasmid, type vii secretion system

                Comments

                Comment on this article