4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex Differences in Inflammation During Venous Remodeling of Arteriovenous Fistulae

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular disorders frequently have differing clinical presentations among women and men. Sex differences exist in vascular access for hemodialysis; women have reduced rates of arteriovenous fistula (AVF) maturation as well as fistula utilization compared with men. Inflammation is increasingly implicated in both clinical studies and animal models as a potent mechanism driving AVF maturation, especially in vessel dilation and wall thickening, that allows venous remodeling to the fistula environment to support hemodialysis. Sex differences have long been recognized in arterial remodeling and diseases, with men having increased cardiovascular events compared with pre-menopausal women. Many of these arterial diseases are driven by inflammation that is similar to the inflammation during AVF maturation. Improved understanding of sex differences in inflammation during vascular remodeling may suggest sex-specific vascular therapies to improve AVF success.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Sex differences in immune responses

          Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy

            Epidemiologic studies have previously suggested that premenopausal females have reduced incidence of cardiovascular disease (CVD) when compared to age-matched males, and the incidence and severity of CVD increases postmenopause. The lower incidence of cardiovascular disease in women during reproductive age is attributed at least in part to estrogen (E2). E2 binds to the traditional E2 receptors (ERs), estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ), as well as the more recently identified G-protein-coupled ER (GPR30), and can exert both genomic and non-genomic actions. This review summarizes the protective role of E2 and its receptors in the cardiovascular system and discusses its underlying mechanisms with an emphasis on oxidative stress, fibrosis, angiogenesis, and vascular function. This review also presents the sexual dimorphic role of ERs in modulating E2 action in cardiovascular disease. The controversies surrounding the clinical use of exogenous E2 as a therapeutic agent for cardiovascular disease in women due to the possible risks of thrombotic events, cancers, and arrhythmia are also discussed. Endogenous local E2 biosynthesis from the conversion of testosterone to E2 via aromatase enzyme offers a novel therapeutic paradigm. Targeting specific ERs in the cardiovascular system may result in novel and possibly safer therapeutic options for cardiovascular protection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of shear stress in the pathogenesis of atherosclerosis.

              Although the pathobiology of atherosclerosis is a complex multifactorial process, blood flow-induced shear stress has emerged as an essential feature of atherogenesis. This fluid drag force acting on the vessel wall is mechanotransduced into a biochemical signal that results in changes in vascular behavior. Maintenance of a physiologic, laminar shear stress is known to be crucial for normal vascular functioning, which includes the regulation of vascular caliber as well as inhibition of proliferation, thrombosis and inflammation of the vessel wall. Thus, shear stress is atheroprotective. It is also recognized that disturbed or oscillatory flows near arterial bifurcations, branch ostia and curvatures are associated with atheroma formation. Additionally, vascular endothelium has been shown to have different behavioral responses to altered flow patterns both at the molecular and cellular levels and these reactions are proposed to promote atherosclerosis in synergy with other well-defined systemic risk factors. Nonlaminar flow promotes changes to endothelial gene expression, cytoskeletal arrangement, wound repair, leukocyte adhesion as well as to the vasoreactive, oxidative and inflammatory states of the artery wall. Disturbed shear stress also influences the site selectivity of atherosclerotic plaque formation as well as its associated vessel wall remodeling, which can affect plaque vulnerability, stent restenosis and smooth muscle cell intimal hyperplasia in venous bypass grafts. Thus, shear stress is critically important in regulating the atheroprotective, normal physiology as well as the pathobiology and dysfunction of the vessel wall through complex molecular mechanisms that promote atherogenesis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                2297-055X
                21 July 2021
                2021
                : 8
                : 715114
                Affiliations
                [1] 1Vascular Biology and Therapeutics Program, Yale School of Medicine , New Haven, CT, United States
                [2] 2Department of Surgery, Yale School of Medicine , New Haven, CT, United States
                [3] 3Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine , New Haven, CT, United States
                [4] 4Department of Immunobiology, Yale School of Medicine , New Haven, CT, United States
                [5] 5Department of Surgery, Veterans Affairs (VA) Connecticut Healthcare System , West Haven, CT, United States
                Author notes

                Edited by: Paul H. A. Quax, Leiden University, Netherlands

                Reviewed by: Taisiya Bezhaeva, Leiden University Medical Center, Netherlands; Margreet R. De Vries, Leiden University Medical Center, Netherlands

                This article was submitted to Atherosclerosis and Vascular Medicine, a section of the journal Frontiers in Cardiovascular Medicine

                Article
                10.3389/fcvm.2021.715114
                8335484
                34368264
                0b6a8cfd-5532-4c9e-a98e-95bc65c6cbaa
                Copyright © 2021 Chan, Weininger, Langford, Jane-Wit and Dardik.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 May 2021
                : 24 June 2021
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 118, Pages: 11, Words: 8146
                Categories
                Cardiovascular Medicine
                Review

                vascular inflammation,arteriovenous fistulae,sex differences,estrogens,androgens sex differences in venous inflammation

                Comments

                Comment on this article