Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular typing of a novel canine parvovirus type 2a mutant circulating in Italy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Canine parvovirus (CPV) is the etiological agent of a severe viral disease of dogs. After its emergence in late 1970s, the CPV original type (CPV-2) was rapidly and totally replaced by three antigenic variants named CPV-2a, CPV-2b and CPV-2c. CPV has an evolutionary rate nearest to those of RNA viruses, with consequences on disease diagnosis and epidemiology. This paper reports the molecular characterization of eight CPV-2a strains collected from dogs in Italy in 2016–2017. Genetic analysis was conducted on a CPV genomic region encompassing both open reading frames (ORFs) encoding for nonstructural (NS1-NS2) and structural proteins (VP1-VP2). Sequence analysis indicates new and unreported sequence changes, mainly affecting the VP2 gene, which included the mutation Tyr324Leu. This study represents the first evidence of a new CPV-2a mutant (VP2 324Leu) and illustrates the importance of a continuous molecular survey in order to obtain more information on effective spread of new CPV mutants.

          Highlights

          • Canine parvovirus strains collected from dogs in southern Italy were analyzed.

          • Nearly complete genome sequences of the CPV strains were obtained and comparatively analyzed.

          • A novel CPV-2a mutant with unreported sequence changes has been characterized.

          • This study reports a novel CPV-2a mutant in genus Protoparvovirus.

          • Our data confirmed the importance of the continuous epidemiological survey.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The family Parvoviridae.

          A set of proposals to rationalize and extend the taxonomy of the family Parvoviridae is currently under review by the International Committee on Taxonomy of Viruses (ICTV). Viruses in this family infect a wide range of hosts, as reflected by the longstanding division into two subfamilies: the Parvovirinae, which contains viruses that infect vertebrate hosts, and the Densovirinae, encompassing viruses that infect arthropod hosts. Using a modified definition for classification into the family that no longer demands isolation as long as the biological context is strong, but does require a near-complete DNA sequence, 134 new viruses and virus variants were identified. The proposals introduce new species and genera into both subfamilies, resolve one misclassified species, and improve taxonomic clarity by employing a series of systematic changes. These include identifying a precise level of sequence similarity required for viruses to belong to the same genus and decreasing the level of sequence similarity required for viruses to belong to the same species. These steps will facilitate recognition of the major phylogenetic branches within genera and eliminate the confusion caused by the near-identity of species and viruses. Changes to taxon nomenclature will establish numbered, non-Latinized binomial names for species, indicating genus affiliation and host range rather than recapitulating virus names. Also, affixes will be included in the names of genera to clarify subfamily affiliation and reduce the ambiguity that results from the vernacular use of "parvovirus" and "densovirus" to denote multiple taxon levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Canine parvovirus—A review of epidemiological and diagnostic aspects, with emphasis on type 2c

            Canine parvovirus type 2 (CPV-2) emerged in late 1970s causing severe epizootics in kennels and dog shelters worldwide. Soon after its emergence, CPV-2 underwent genetic evolution giving rise consecutively to two antigenic variants, CPV-2a and CPV-2b that replaced progressively the original type. In 2000, a new antigenic variant, CPV-2c, was detected in Italy and rapidly spread to several countries. In comparison to the original type CPV-2, the antigenic variants display increased pathogenicity in dogs and extended host range, being able to infect and cause disease in cats. Epidemiological survey indicate that the newest type CPV-2c is becoming prevalent in different geographic regions and is often associated to severe disease in adult dogs and also in dogs that have completed the vaccination protocols. However, the primary cause of failure of CPV vaccination is interference by maternally derived immunity. Diagnosis of CPV infection by traditional methods has been shown to be poorly sensitive, especially in the late stages of infections. New diagnostic approaches based on molecular methods have been developed for sensitive detection of CPV in clinical samples and rapid characterisation of the viral type. Continuous surveillance will help assess whether there is a real need to update currently available vaccines and diagnostic tests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of canine distemper virus in dogs by real-time RT-PCR.

              Canine distemper virus is the etiological agent of a severe disease in dogs and many other carnivores. Clinical diagnosis of canine distemper is difficult due to the broad spectrum of signs that may be confounded with other respiratory and enteric diseases of dogs. Accordingly, a laboratory confirmation is required for suspected cases. In this study a real-time RT-PCR assay was developed for detection and quantitation of canine distemper virus. The assay exhibited high specificity as all the negative controls (no-template-controls and samples from healthy sero-negative dogs) and other canine pathogens were not misdetected. Up to 1 x 10(2) copies of RNA were detected by the TaqMan assay, thus revealing a high sensitivity. Quantitative TaqMan was validated on clinical samples, including various tissues and organs collected from dogs naturally infected by canine distemper virus. Urines, tonsil, conjunctival swabs and whole blood were found to contain high virus loads and therefore proved to be suitable targets for detection of canine distemper virus RNA.
                Bookmark

                Author and article information

                Contributors
                Journal
                Infect Genet Evol
                Infect. Genet. Evol
                Infection, Genetics and Evolution
                Elsevier B.V.
                1567-1348
                1567-7257
                13 March 2018
                July 2018
                13 March 2018
                : 61
                : 67-73
                Affiliations
                [a ]Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
                [b ]Department of Veterinary Medicine, University of Bari, Strada provinciale per Casamassima Km 3, 70010 Valenzano, Bari, Italy
                Author notes
                [* ]Corresponding author. dottoremira@ 123456gmail.com
                Article
                S1567-1348(18)30097-2
                10.1016/j.meegid.2018.03.010
                7185394
                29548803
                0bb74bd1-635e-4b8d-9362-462abc27d62a
                © 2018 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 13 November 2017
                : 8 March 2018
                : 11 March 2018
                Categories
                Article

                Genetics
                dogs,canine parvovirus,protoparvovirus,molecular characterization,sequence analysis,point mutations

                Comments

                Comment on this article