12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Extracellular protein deposition correlates with glial activation and oxidative stress in Creutzfeldt-Jakob and Alzheimer's disease.

      Acta Neuropathologica
      Alzheimer Disease, metabolism, pathology, Amyloid beta-Peptides, Brain, Creutzfeldt-Jakob Syndrome, DNA, Extracellular Space, Humans, Hydroxylation, Immunohistochemistry, Neuroglia, Neurons, Oxidative Stress, physiology, Plaque, Amyloid, Prions

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relation of protein deposition with glial cells and oxidative stress was studied in Creutzfeldt-Jakob disease (CJD), Alzheimer's disease (AD) and neurologically healthy control patients. Three neocortical areas, the hippocampus, and the cerebellum of 20 CJD, 10 AD and 10 control patients were immunohistochemically examined for the presence of astroglia, microglia, and protein depositions. To investigate the level of oxidative stress the percentage of neurons with cytoplasmic hydroxylated DNA was determined. Astroglia, microglia and oxidative stress were located around amyloid-beta depositions and a clear quantitative relation was identified. These markers were only increased in the hippocampus of AD compared to controls. Quantitative analysis in these groups showed a correlation between the oxidative stress level and the number of microglia in the grey matter. All markers were increased in the grey matter and the cerebellum of CJD when compared to AD and controls. The highest numbers of lesions were observed in a CJD population with a rapid disease progression. Quantitative analysis showed a correlation between the oxidative stress level and all glial cells. Further analysis showed that the number of microglia was related to the intensity of the prion depositions. Glial cells in the brain are thought to be the main producers of oxidative stress, resulting in neuronal death. Our results confirm that this close relationship exists in both AD and CJD. We also show that an increased number of glial cells and therefore possibly oxidative stress is associated with the disease progression.

          Related collections

          Author and article information

          Comments

          Comment on this article