0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dihydrotanshinone I Inhibits the Lung Metastasis of Breast Cancer by Suppressing Neutrophil Extracellular Traps Formation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer (BC) is a common female malignancy, worldwide. BC death is predominantly caused by lung metastasis. According to previous studies, Dihydrotanshinone I (DHT), a bioactive compound in Salvia miltiorrhiza Bunge (S. miltiorrhiza), has inhibitory effects on numerous cancers. Here, we investigated the anti-metastatic effect of DHT on BC, where DHT more strongly inhibited the growth of BC cells (MDA-MB-231, 4T1, MCF-7, and SKBR-3) than breast epithelial cells (MCF-10a). Additionally, DHT repressed the wound healing, invasion, and migration activities of 4T1 cells. In the 4T1 spontaneous metastasis model, DHT (20 mg/kg) blocked metastasis progression and distribution in the lung tissue by 74.9%. DHT reversed the formation of neutrophil extracellular traps (NETs) induced by phorbol 12-myristate 13-acetate, as well as ameliorated NETs-induced metastasis. Furthermore, it inhibited Ly6G+Mpo+ neutrophils infiltration and H3Cit expression in the lung tissues. RNA sequencing, western blot, and bioinformatical analysis indicated that TIMP1 could modulate DHT acting on lung metastasis inhibition. The study demonstrated a novel suppression mechanism of DHT on NETs formation to inhibit BC metastasis.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells.

            Recent clinical successes of cancer immunotherapy necessitate the investigation of the interaction between malignant cells and the host immune system. However, elucidation of complex tumor-immune interactions presents major computational and experimental challenges. Here, we present Tumor Immune Estimation Resource (TIMER; cistrome.shinyapps.io/timer) to comprehensively investigate molecular characterization of tumor-immune interactions. Levels of six tumor-infiltrating immune subsets are precalculated for 10,897 tumors from 32 cancer types. TIMER provides 6 major analytic modules that allow users to interactively explore the associations between immune infiltrates and a wide spectrum of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number alterations. TIMER provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers. Cancer Res; 77(21); e108-10. ©2017 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neutrophil extracellular traps kill bacteria.

              Neutrophils engulf and kill bacteria when their antimicrobial granules fuse with the phagosome. Here, we describe that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria. These neutrophil extracellular traps (NETs) degrade virulence factors and kill bacteria. NETs are abundant in vivo in experimental dysentery and spontaneous human appendicitis, two examples of acute inflammation. NETs appear to be a form of innate response that binds microorganisms, prevents them from spreading, and ensures a high local concentration of antimicrobial agents to degrade virulence factors and kill bacteria.
                Bookmark

                Author and article information

                Contributors
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                December 2022
                December 02 2022
                : 23
                : 23
                : 15180
                Article
                10.3390/ijms232315180
                0e751caf-9740-46c3-8056-a7380e3f1481
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article