7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Geniposide, the component of the Chinese herbal formula Tongluojiunao, protects amyloid-β peptide (1–42-mediated death of hippocampal neurons via the non-classical estrogen signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tongluojiunao (TLJN) is an herbal medicine consisting of two main components, geniposide and ginsenoside Rg1. TLJN has been shown to protect primary cultured hippocampal neurons. However, its mechanism of action remains unclear. In the present study, primary cultured hippocampal neurons treated with Aβ 1–42 (10 µmol/L) significantly increased the release of lactate dehydrogenase, which was markedly reduced by TLJN (2 µL/mL), specifically by the component geniposide (26 µmol/L), but not ginsenoside Rg1 (2.5 µmol/L). The estrogen receptor inhibitor, ICI182780 (1 µmol/L), did not block TLJN- or geniposide-mediated decrease of lactate dehydrogenase under Aβ 1–42-exposed conditions. However, the phosphatidyl inositol 3-kinase or mitogen-activated protein kinase pathway inhibitor, LY294002 (50 µmol/L) or U0126 (10 µmol/L), respectively blocked the decrease of lactate dehydrogenase mediated by TLJN or geniposide. Therefore, these results suggest that the non-classical estrogen pathway ( i.e., phosphatidyl inositol 3-kinase or mitogen-activated protein kinase) is involved in the neuroprotective effect of TLJN, specifically its component, geniposide, against Aβ 1–42-mediated cell death in primary cultured hippocampal neurons.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes.

          Estrogen receptors (ERs) act by regulating transcriptional processes. The classical mechanism of ER action involves estrogen binding to receptors in the nucleus, after which the receptors dimerize and bind to specific response elements known as estrogen response elements (EREs) located in the promoters of target genes. However, ERs can also regulate gene expression without directly binding to DNA. This occurs through protein-protein interactions with other DNA-binding transcription factors in the nucleus. In addition, membrane-associated ERs mediate nongenomic actions of estrogens, which can lead both to altered functions of proteins in the cytoplasm and to regulation of gene expression. The latter two mechanisms of ER action enable a broader range of genes to be regulated than the range that can be regulated by the classical mechanism of ER action alone. This review surveys our knowledge about the molecular mechanism by which ERs regulate the expression of genes that do not contain EREs, and it gives examples of the ways in which the genomic and nongenomic actions of ERs on target genes converge. Genomic and nongenomic actions of ERs that do not depend on EREs influence the physiology of many target tissues, and thus, increasing our understanding of the molecular mechanisms behind these actions is highly relevant for the development of novel drugs that target specific receptor actions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toxic proteins in neurodegenerative disease.

            J. Taylor (2002)
            A broad range of neurodegenerative disorders is characterized by neuronal damage that may be caused by toxic, aggregation-prone proteins. As genes are identified for these disorders and cell culture and animal models are developed, it has become clear that a major effect of mutations in these genes is the abnormal processing and accumulation of misfolded protein in neuronal inclusions and plaques. Increased understanding of the cellular mechanisms for disposal of abnormal proteins and of the effects of toxic protein accumulation on neuronal survival may allow the development of rational, effective treatment for these disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system.

              Estrogen plays a profound role in regulating the structure and function of many neuronal systems in the adult rat brain. The actions of estrogen were thought to be mediated by a single nuclear estrogen receptor (ER) until the recent cloning of a novel ER (ER-beta). To ascertain which ER is involved in the regulation of different brain regions, the present study compared the distribution of the classical (ER-alpha) and novel (ER-beta) forms of ER mRNA-expressing neurons in the central nervous system (CNS) of the rat with in situ hybridization histochemistry. Female rat brain, spinal cord, and eyes were frozen, and cryostat sections were collected on slides, hybridized with [35S]-labeled antisense riboprobes complimentary to ER-alpha or ER-beta mRNA, stringently washed, and opposed to emulsion. The results of these studies revealed the presence of ER-alpha and ER-beta mRNA throughout the rostral-caudal extent of the brain and spinal cord. Neurons of the olfactory bulb, supraoptic, paraventricular, suprachiasmatic, and tuberal hypothalamic nuclei, zona incerta, ventral tegmental area, cerebellum (Purkinje cells), laminae III-V, VIII, and IX of the spinal cord, and pineal gland contained exclusively ER-beta mRNA. In contrast, only ER-alpha hybridization signal was seen in the ventromedial hypothalamic nucleus and subfornical organ. Perikarya in other brain regions, including the bed nucleus of the stria terminalis, medial and cortical amygdaloid nuclei, preoptic area, lateral habenula, periaqueductal gray, parabrachial nucleus, locus ceruleus, nucleus of the solitary tract, spinal trigeminal nucleus and superficial laminae of the spinal cord, contained both forms of ER mRNA. Although the cerebral cortex and hippocampus contained both ER mRNAs, the hybridization signal for ER-alpha mRNA was very weak compared with ER-beta mRNA. The results of these in situ hybridization studies provide detailed information about the distribution of ER-alpha and ER-beta mRNAs in the rat CNS. In addition, this comparative study provides evidence that the region-specific expression of ER-alpha, ER-beta, or both may be important in determining the physiological responses of neuronal populations to estrogen action.
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regeneration Research
                Medknow Publications & Media Pvt Ltd (India )
                1673-5374
                1876-7958
                01 March 2014
                : 9
                : 5
                : 474-480
                Affiliations
                [1 ]School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, China
                [2 ]School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
                Author notes
                Corresponding author: Qian Hua, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China, huaq@ 123456bucm.edu.cn , hqianz@ 123456aliyun.com .

                Author contributions: Li J and Chen JY performed statistical analysis and wrote the manuscript. Wang F, Ding HM, Zhao YN, Tan Y, Zhang Q and Wang X were involved in the manuscript preparation. Jin CY and Li XJ were responsible for the study design and data collection. Chen WJ, Sun P and Fan AR performed some of the experiments. Hua Q was responsible for the study design and research funding. All authors approved the final version of the manuscript.

                Article
                NRR-9-474
                10.4103/1673-5374.130063
                4153512
                25206841
                0e7731ac-bfaa-4abc-b04f-610c45c973a5
                Copyright: © Neural Regeneration Research

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 January 2014
                Categories
                Research and Report

                nerve regeneration,neurodegeneration,alzheimer's disease,cell culture,hippocampus,neurons,aβ1–42,estrogen signaling pathway,phosphatidyl inositol 3-kinase pathway,mitogen-activated protein kinase pathway,tongluojiunao injection,geniposide,ginsenoside rg1,nsfc grant,neural regeneration

                Comments

                Comment on this article