29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During mitosis, cortical Moesin activity is restricted to promote cell elongation and cytokinesis, but localized Moesin recruitment is necessary for polar bleb retraction and cortical relaxation.

          Abstract

          The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding.

          During mitosis, adherent animal cells undergo a drastic shape change, from essentially flat to round. Mitotic cell rounding is thought to facilitate organization within the mitotic cell and be necessary for the geometric requirements of division. However, the forces that drive this shape change remain poorly understood in the presence of external impediments, such as a tissue environment. Here we use cantilevers to track cell rounding force and volume. We show that cells have an outward rounding force, which increases as cells enter mitosis. We find that this mitotic rounding force depends both on the actomyosin cytoskeleton and the cells' ability to regulate osmolarity. The rounding force itself is generated by an osmotic pressure. However, the actomyosin cortex is required to maintain this rounding force against external impediments. Instantaneous disruption of the actomyosin cortex leads to volume increase, and stimulation of actomyosin contraction leads to volume decrease. These results show that in cells, osmotic pressure is balanced by inwardly directed actomyosin cortex contraction. Thus, by locally modulating actomyosin-cortex-dependent surface tension and globally regulating osmotic pressure, cells can control their volume, shape and mechanical properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-equilibration of hydrostatic pressure in blebbing cells.

            Current models for protrusive motility in animal cells focus on cytoskeleton-based mechanisms, where localized protrusion is driven by local regulation of actin biochemistry. In plants and fungi, protrusion is driven primarily by hydrostatic pressure. For hydrostatic pressure to drive localized protrusion in animal cells, it would have to be locally regulated, but current models treating cytoplasm as an incompressible viscoelastic continuum or viscous liquid require that hydrostatic pressure equilibrates essentially instantaneously over the whole cell. Here, we use cell blebs as reporters of local pressure in the cytoplasm. When we locally perfuse blebbing cells with cortex-relaxing drugs to dissipate pressure on one side, blebbing continues on the untreated side, implying non-equilibration of pressure on scales of approximately 10 microm and 10 s. We can account for localization of pressure by considering the cytoplasm as a contractile, elastic network infiltrated by cytosol. Motion of the fluid relative to the network generates spatially heterogeneous transients in the pressure field, and can be described in the framework of poroelasticity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin.

              Actin filaments (F-actin) are protein polymers that undergo rapid assembly and disassembly and control an enormous variety of cellular processes ranging from force production to regulation of signal transduction. Consequently, imaging of F-actin has become an increasingly important goal for biologists seeking to understand how cells and tissues function. However, most of the available means for imaging F-actin in living cells suffer from one or more biological or experimental shortcomings. Here we describe fluorescent F-actin probes based on the calponin homology domain of utrophin (Utr-CH), which binds F-actin without stabilizing it in vitro. We show that these probes faithfully report the distribution of F-actin in living and fixed cells, distinguish between stable and dynamic F-actin, and have no obvious effects on processes that depend critically on the balance of actin assembly and disassembly. (c) 2007 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                3 October 2011
                : 195
                : 1
                : 99-112
                Affiliations
                [1 ]Cell Biology of Mitosis laboratory and [2 ]Mitotic Mechanisms and Chromosome Dynamics laboratory, Institute for Research and Immunology and Cancer , and [3 ]Département de Pathologie et de Biologie Cellulaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
                [4 ]Centre de Biologie du Développement , [5 ]Centre National de la Recherche Scientifique Unité Mixte de Recherché 5547 , [6 ]Institut National de la Santé et de la Recherche Médicale U1048 , [7 ]Institut des maladies métaboliques et cardiovasculaires , and [8 ]Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, Cedex 09, France
                Author notes
                Correspondence to Sébastien Carreno: sebastien.carreno@ 123456umontreal.ca
                Article
                201106048
                10.1083/jcb.201106048
                3187714
                21969469
                127ce66a-c225-42dd-930e-83cf89136f1f
                © 2011 Roubinet et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 8 June 2011
                : 2 September 2011
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article