106
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generation of neural progenitor cells by chemical cocktails and hypoxia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neural progenitor cells (NPCs) can be induced from somatic cells by defined factors. Here we report that NPCs can be generated from mouse embryonic fibroblasts by a chemical cocktail, namely VCR (V, VPA, an inhibitor of HDACs; C, CHIR99021, an inhibitor of GSK-3 kinases and R, Repsox, an inhibitor of TGF-β pathways), under a physiological hypoxic condition. These chemical-induced NPCs (ciNPCs) resemble mouse brain-derived NPCs regarding their proliferative and self-renewing abilities, gene expression profiles, and multipotency for different neuroectodermal lineages in vitro and in vivo. Further experiments reveal that alternative cocktails with inhibitors of histone deacetylation, glycogen synthase kinase, and TGF-β pathways show similar efficacies for ciNPC induction. Moreover, ciNPCs can also be induced from mouse tail-tip fibroblasts and human urinary cells with the same chemical cocktail VCR. Thus our study demonstrates that lineage-specific conversion of somatic cells to NPCs could be achieved by chemical cocktails without introducing exogenous factors.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.

          Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds.

            Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sheep cloned by nuclear transfer from a cultured cell line.

              Nuclear transfer has been used in mammals as both a valuable tool in embryological studies and as a method for the multiplication of 'elite' embryos. Offspring have only been reported when early embryos, or embryo-derived cells during primary culture, were used as nuclear donors. Here we provide the first report, to our knowledge, of live mammalian offspring following nuclear transfer from an established cell line. Lambs were born after cells derived from sheep embryos, which had been cultured for 6 to 13 passages, were induced to quiesce by serum starvation before transfer of their nuclei into enucleated oocytes. Induction of quiescence in the donor cells may modify the donor chromatin structure to help nuclear reprogramming and allow development. This approach will provide the same powerful opportunities for analysis and modification of gene function in livestock species that are available in the mouse through the use of embryonic stem cells.
                Bookmark

                Author and article information

                Journal
                Cell Res
                Cell Res
                Cell Research
                Nature Publishing Group
                1001-0602
                1748-7838
                June 2014
                18 March 2014
                1 June 2014
                : 24
                : 6
                : 665-679
                Affiliations
                [1 ]State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
                [2 ]Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University , Shanghai 200032, China
                [3 ]School of Life Science and Technology, Tongji University , Shanghai 200092, China
                Author notes
                [*]

                These four authors contributed equally to this work.

                Article
                cr201432
                10.1038/cr.2014.32
                4042166
                24638034
                12fbb7bf-903c-4489-872d-006ff543f284
                Copyright © 2014 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0

                History
                : 07 February 2014
                : 25 February 2014
                : 27 February 2014
                Categories
                Original Article

                Cell biology
                lineage conversion,neural progenitor cells,chemical cocktails,hypoxia
                Cell biology
                lineage conversion, neural progenitor cells, chemical cocktails, hypoxia

                Comments

                Comment on this article