0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polarimetric Imaging via Deep Learning: A Review

      , , , , , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polarization can provide information largely uncorrelated with the spectrum and intensity. Therefore, polarimetric imaging (PI) techniques have significant advantages in many fields, e.g., ocean observation, remote sensing (RS), biomedical diagnosis, and autonomous vehicles. Recently, with the increasing amount of data and the rapid development of physical models, deep learning (DL) and its related technique have become an irreplaceable solution for solving various tasks and breaking the limitations of traditional methods. PI and DL have been combined successfully to provide brand-new solutions to many practical applications. This review briefly introduces PI and DL’s most relevant concepts and models. It then shows how DL has been applied for PI tasks, including image restoration, object detection, image fusion, scene classification, and resolution improvement. The review covers the state-of-the-art works combining PI with DL algorithms and recommends some potential future research directions. We hope that the present work will be helpful for researchers in the fields of both optical imaging and RS, and that it will stimulate more ideas in this exciting research field.

          Related collections

          Most cited references301

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gradient-based learning applied to document recognition

              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Going deeper with convolutions

                Bookmark

                Author and article information

                Contributors
                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                March 2023
                March 11 2023
                : 15
                : 6
                : 1540
                Article
                10.3390/rs15061540
                15daee09-7ab5-47f8-8180-435ba2966250
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article