3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autophagy mediates ER stress and inflammation in Helicobacter pylori-related gastric cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Autophagy is a cellular degradation mechanism, which is triggered by the bacterium Helicobacter pylori. A single nucleotide polymorphism (SNP) in the autophagy gene ATG16L1 (rs2241880, G-allele) has been shown to dysregulate autophagy and increase intestinal endoplasmic reticulum (ER) stress. Here, we investigate the role of this SNP in H. pylori-mediated gastric carcinogenesis and its molecular pathways. ATG16L1 rs2241880 was genotyped in subjects from different ethnic cohorts (Dutch and Australian) presenting with gastric (pre)malignant lesions of various severity. Expression of GRP78 (a marker for ER stress) was assessed in gastric tissues. The effect of ATG16L1 rs2241880 on H. pylori-mediated ER stress and pro-inflammatory cytokine induction was investigated in organoids and CRISPR/Cas9 modified cell lines. Development of gastric cancer was associated with the ATG16L1 rs2241880 G-allele. Intestinal metaplastic cells in gastric tissue of patients showed increased levels of ER-stress. In vitro models showed that H. pylori increases autophagy while reducing ER stress, which appeared partly mediated by the ATG16L1 rs2241880 genotype. H. pylori-induced IL-8 production was increased while TNF-α production was decreased, in cells homozygous for the G-allele. The ATG16L1 rs2241880 G-allele is associated with progression of gastric premalignant lesions and cancer. Modulation of H. pylori-induced ER stress pathways and pro-inflammatory mediators by ATG16L1 rs2441880 may underlie this increased risk.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease

            Crohn’s disease (CD) and ulcerative colitis (UC), the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry with rising prevalence in other populations 1 . Genome-wide association studies (GWAS) and subsequent meta-analyses of CD and UC 2,3 as separate phenotypes implicated previously unsuspected mechanisms, such as autophagy 4 , in pathogenesis and showed that some IBD loci are shared with other inflammatory diseases 5 . Here we expand knowledge of relevant pathways by undertaking a meta-analysis of CD and UC genome-wide association scans, with validation of significant findings in more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional and balancing selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe striking overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Roles of Autophagy in Cancer

              Autophagy is an intracellular degradative process that occurs under several stressful conditions, including organelle damage, the presence of abnormal proteins, and nutrient deprivation. The mechanism of autophagy initiates the formation of autophagosomes that capture degraded components and then fuse with lysosomes to recycle these components. The modulation of autophagy plays dual roles in tumor suppression and promotion in many cancers. In addition, autophagy regulates the properties of cancer stem-cells by contributing to the maintenance of stemness, the induction of recurrence, and the development of resistance to anticancer reagents. Although some autophagy modulators, such as rapamycin and chloroquine, are used to regulate autophagy in anticancer therapy, since this process also plays roles in both tumor suppression and promotion, the precise mechanism of autophagy in cancer requires further study. In this review, we will summarize the mechanism of autophagy under stressful conditions and its roles in tumor suppression and promotion in cancer and in cancer stem-cells. Furthermore, we discuss how autophagy is a promising potential therapeutic target in cancer treatment.
                Bookmark

                Author and article information

                Journal
                Gut Microbes
                Gut Microbes
                Gut Microbes
                Taylor & Francis
                1949-0976
                1949-0984
                29 December 2021
                2022
                29 December 2021
                : 14
                : 1
                : 2015238
                Affiliations
                [a ]Department of Gastroenterology and Hepatology, Erasmus University Medical Center; , Rotterdam, The Netherlands
                [b ]School of Biotechnology and Biomolecular Sciences, Unsw; , Sydney, Australia
                [c ]Department of Pathology, Erasmus University Medical Center; , Rotterdam, Netherlands
                Author notes
                CONTACT N. Castaño-Rodríguez n.castanorodriguez@ 123456unsw.edu.au School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
                G.M. Fuhler PhD g.fuhler@ 123456erasmusmc.nl Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Unsw; , Rotterdam, The Netherlands
                [*]

                Authors contributed equally

                Author information
                https://orcid.org/0000-0001-9181-5499
                https://orcid.org/0000-0002-8611-840X
                https://orcid.org/0000-0002-0633-3098
                Article
                2015238
                10.1080/19490976.2021.2015238
                8726742
                34965181
                19199204-7e06-4056-b353-c5114532af25
                © 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 6, Tables: 5, References: 64, Pages: 1
                Categories
                Research Article
                Research Paper

                Microbiology & Virology
                intestinal metaplasia,atrophic gastritis,gastric cancer,helicobacter pylori,autophagy,er stress,inflammation,atg16l1

                Comments

                Comment on this article