242
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondria are highly motile organelles that constantly undergo fission and fusion. Impairment of mitochondrial dynamics is associated with mitochondrial dysfunction and is frequently linked to the pathogenesis of neurodegenerative diseases and cancer. We have previously shown that biallelic inactivation of the suppressor of cytokine signaling 6 ( SOCS6) gene is a frequent event in human gastric cancer. In this study, we recapitulated the event of SOCS6 loss using a Lentivirus-based knockdown approach, and demonstrated the linkage between SOCS6 depletion and the suppression of programmed cell death. SOCS6 promotes intrinsic apoptosis, with increased Bax conformational change, mitochondrial targeting, and oligomerization. Most importantly, SOCS6 is targeted to mitochondria and induces mitochondrial fragmentation mediated through an increase in DRP1 fission activity. Here, we show that SOCS6 forms complex with DRP1 and the mitochondrial phosphatase PGAM5, attenuates DRP1 phosphorylation, and promotes DRP1 mitochondrial translocation. Based on mutation analyses, SOCS6-mediated apoptosis is tightly coupled to its ability to induce mitochondrial fission. This study demonstrates an important role for SOCS6 in modulating mitochondrial dynamics and apoptosis.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization.

          Mitochondrial fusion and division play important roles in the regulation of apoptosis. Mitochondrial fusion proteins attenuate apoptosis by inhibiting release of cytochrome c from mitochondria, in part by controlling cristae structures. Mitochondrial division promotes apoptosis by an unknown mechanism. We addressed how division proteins regulate apoptosis using inhibitors of mitochondrial division identified in a chemical screen. The most efficacious inhibitor, mdivi-1 (for mitochondrial division inhibitor) attenuates mitochondrial division in yeast and mammalian cells by selectively inhibiting the mitochondrial division dynamin. In cells, mdivi-1 retards apoptosis by inhibiting mitochondrial outer membrane permeabilization. In vitro, mdivi-1 potently blocks Bid-activated Bax/Bak-dependent cytochrome c release from mitochondria. These data indicate the mitochondrial division dynamin directly regulates mitochondrial outer membrane permeabilization independent of Drp1-mediated division. Our findings raise the interesting possibility that mdivi-1 represents a class of therapeutics for stroke, myocardial infarction, and neurodegenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial dynamics and apoptosis.

            In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondrial fission and fusion also actively participate in apoptosis induction. This review will cover the recent advances and presents competing models on how the mitochondrial fission and fusion machinery may intersect apoptosis pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of cytochrome c release from mitochondria.

              In healthy cells, cytochrome c (Cyt c) is located in the mitochondrial intermembrane/intercristae spaces, where it functions as an electron shuttle in the respiratory chain and interacts with cardiolipin (CL). Several proapoptotic stimuli induce the permeabilization of the outer membrane, facilitate the communication between intermembrane and intercristae spaces and promote the mobilization of Cyt c from CL, allowing for Cyt c release. In the cytosol, Cyt c mediates the allosteric activation of apoptosis-protease activating factor 1, which is required for the proteolytic maturation of caspase-9 and caspase-3. Activated caspases ultimately lead to apoptotic cell dismantling. Nevertheless, cytosolic Cyt c has been associated also to vital cell functions (i.e. differentiation), suggesting that its release not always occurs in an all-or-nothing fashion and that mitochondrial outer membrane permeabilization may not invariably lead to cell death. This review deals with the events involved in Cyt c release from mitochondria, with special attention to its regulation and final consequences.
                Bookmark

                Author and article information

                Journal
                Cell Death Differ
                Cell Death Differ
                Cell Death and Differentiation
                Nature Publishing Group
                1350-9047
                1476-5403
                January 2013
                07 September 2012
                1 January 2013
                : 20
                : 1
                : 139-153
                Affiliations
                [1 ]Institute of Biochemistry and Molecular Biology, National Yang-Ming University , Taipei, Taiwan
                [2 ]Institute of Biomedical Sciences, Academia Sinica , Taipei, Taiwan
                [3 ]Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University , Taipei, Taiwan
                [4 ]Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan
                Author notes
                [* ]Institute of Biomedical Sciences, Academia Sinica , 128 Academia Road, Section 2, Taipei 115, Taiwan. Tel: +886 2 2789 9046; Fax: +886 2 2785 8594; E-mail: bmchen@ 123456ibms.sinica.edu.tw
                [* ]Institute of Biochemistry and Molecular Biology, National Yang-Ming University , 155 Li-Nong Street, Section 2, Shih-Pai, Taipei 112, Taiwan. Tel: +886 2 2826 7126; Fax: +886 2 2826 4843; E-mail: ffwang@ 123456ym.edu.tw
                [5]

                These authors contributed equally to this work.

                Article
                cdd2012106
                10.1038/cdd.2012.106
                3524647
                22955947
                19cca981-c0bb-4b7e-8cb5-5a919409cd23
                Copyright © 2013 Macmillan Publishers Limited

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 23 January 2012
                : 09 July 2012
                : 31 July 2012
                Categories
                Original Paper

                Cell biology
                apoptosis,drp1,mitochondrial dynamic,pgam5,socs6
                Cell biology
                apoptosis, drp1, mitochondrial dynamic, pgam5, socs6

                Comments

                Comment on this article