12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Participation of the left inferior frontal gyrus in human originality

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human creative cognition is commonly described as a twofold cyclic process that involves an idea generation phase and an idea evaluation phase. Although the evaluation phase makes a crucial contribution to originality, its underlying mechanisms have not received sufficient research attention. Here, we suggest that the left inferior frontal gyrus (lIFG) plays a major role in the interplay between the evaluation and generation networks and that inhibiting this region's activity may have an effect on "releasing" the generation neural network, resulting in greater originality. To examine the neural networks that mediate the generation and evaluation of ideas, we conducted an fMRI experiment on a group of healthy human participants (Study 1), in which we compared an idea generation task to an idea evaluation task. We found that evaluating the originality of ideas is indeed associated with a relative increase in lIFG activation, as opposed to generating original ideas. We further showed that temporarily inhibiting the lIFG using continuous theta-burst stimulation (Study 2) results in less strict evaluation on the one hand and increased originality scores on the other. Our findings provide converging evidence from multiple methods to show that the lIFG participates in evaluating the originality of ideas.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Theta burst stimulation of the human motor cortex.

          It has been 30 years since the discovery that repeated electrical stimulation of neural pathways can lead to long-term potentiation in hippocampal slices. With its relevance to processes such as learning and memory, the technique has produced a vast literature on mechanisms of synaptic plasticity in animal models. To date, the most promising method for transferring these methods to humans is repetitive transcranial magnetic stimulation (rTMS), a noninvasive method of stimulating neural pathways in the brain of conscious subjects through the intact scalp. However, effects on synaptic plasticity reported are often weak, highly variable between individuals, and rarely last longer than 30 min. Here we describe a very rapid method of conditioning the human motor cortex using rTMS that produces a controllable, consistent, long-lasting, and powerful effect on motor cortex physiology and behavior after an application period of only 20-190 s.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee

            These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee.

              Transcranial magnetic stimulation (TMS) is an established neurophysiological tool to examine the integrity of the fast-conducting corticomotor pathways in a wide range of diseases associated with motor dysfunction. This includes but is not limited to patients with multiple sclerosis, amyotrophic lateral sclerosis, stroke, movement disorders, disorders affecting the spinal cord, facial and other cranial nerves. These guidelines cover practical aspects of TMS in a clinical setting. We first discuss the technical and physiological aspects of TMS that are relevant for the diagnostic use of TMS. We then lay out the general principles that apply to a standardized clinical examination of the fast-conducting corticomotor pathways with single-pulse TMS. This is followed by a detailed description of how to examine corticomotor conduction to the hand, leg, trunk and facial muscles in patients. Additional sections cover safety issues, the triple stimulation technique, and neuropediatric aspects of TMS. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Brain Structure and Function
                Brain Struct Funct
                Springer Science and Business Media LLC
                1863-2653
                1863-2661
                January 2018
                August 21 2017
                January 2018
                : 223
                : 1
                : 329-341
                Article
                10.1007/s00429-017-1500-5
                28828749
                19ffaef9-0f12-4013-87bd-16200986796d
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article