25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mthfs is an Essential Gene in Mice and a Component of the Purinosome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tetrahydrofolates (THF) are a family of cofactors that function as one-carbon donors in folate-dependent one-carbon metabolism, a metabolic network required for the de novo synthesis of purines, thymidylate, and for the remethylation of homocysteine to methionine in the cytoplasm. 5-FormylTHF is not a cofactor in one-carbon metabolism, but serves as a storage form of THF cofactors. 5-formylTHF is mobilized back into the THF cofactor pool by methenyltetrahydrofolate synthetase (MTHFS), which catalyzes the irreversible and ATP-dependent conversion 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate. Mthfs is not an essential gene in Arabidopsis, but MTHFS expression is elevated in animal tumors, enhances de novo purine synthesis, confers partial resistance to antifolate purine synthesis inhibitors and increases rates of folate catabolism in mammalian cell cultures. However, the mechanisms underlying these effects of MTHFS expression have yet to be established. The purpose of this study was to investigate the role and essentiality of MTHFS in mice. Mthfs was disrupted through the insertion of a gene trap vector between exons 1 and 2. Mthfs gt/+ mice were fertile and viable. No Mthfs gt/gt embryos were recovered from Mthfs gt/+ intercrosses, indicating Mthfs is an essential gene in mice. Tissue MTHFS protein levels are decreased in both Mthfs gt/+ and Mthfs +/+ mice placed on a folate and choline deficient diet, and mouse embryonic fibroblasts from Mthfs gt/+ embryos exhibit decreased capacity for de novo purine synthesis without impairment in de novo thymidylate synthesis. MTHFS was shown to co-localize with two enzymes of the de novo purine synthesis pathway in HeLa cells in a cell cycle-dependent manner, and to be modified by the small ubiquitin-like modifier (SUMO) protein. Mutation of the consensus SUMO modification sites on MTHFS eliminated co-localization of MTHFS with the de novo purine biosynthesis pathway under purine-deficient conditions. The results from this study indicate that MTHFS enhances purine biosynthesis by delivering 10-formylTHF to the purinosome in a SUMO-dependent fashion.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Homocysteine metabolism.

          J Selhub (1999)
          Homocysteine is a sulfur amino acid whose metabolism stands at the intersection of two pathways: remethylation to methionine, which requires folate and vitamin B12 (or betaine in an alternative reaction); and transsulfuration to cystathionine, which requires pyridoxal-5'-phosphate. The two pathways are coordinated by S-adenosylmethionine, which acts as an allosteric inhibitor of the methylenetetrahydrofolate reductase reaction and as an activator of cystathionine beta-synthase. Hyperhomocysteinemia, a condition that recent epidemiological studies have shown to be associated with increased risk of vascular disease, arises from disrupted homocysteine metabolism. Severe hyperhomocysteinemia is due to rare genetic defects resulting in deficiencies in cystathionine beta synthase, methylenetetrahydrofolate reductase, or in enzymes involved in methyl-B12 synthesis and homocysteine methylation. Mild hyperhomocysteinemia seen in fasting conditions is due to mild impairment in the methylation pathway (i.e. folate or B12 deficiencies or methylenetetrahydrofolate reductase thermolability). Post-methionine-load hyperhomocysteinemia may be due to heterozygous cystathionine beta-synthase defect or B6 deficiency. Early studies with nonphysiological high homocysteine levels showed a variety of deleterious effects on endothelial or smooth muscle cells in culture. More recent studies with human beings and animals with mild hyperhomocysteinemia provided encouraging results in the attempt to understand the mechanism that underlies this relationship between mild elevations of plasma homocysteine and vascular disease. The studies with animal models indicated the possibility that the effect of elevated homocysteine is multifactorial, affecting both the vascular wall structure and the blood coagulation system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status.

            DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/microg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reversible compartmentalization of de novo purine biosynthetic complexes in living cells.

              Purines are synthesized de novo in 10 chemical steps that are catalyzed by six enzymes in eukaryotes. Studies in vitro have provided little evidence of anticipated protein-protein interactions that would enable substrate channeling and regulation of the metabolic flux. We applied fluorescence microscopy to HeLa cells and discovered that all six enzymes colocalize to form clusters in the cellular cytoplasm. The association and dissociation of these enzyme clusters can be regulated dynamically, by either changing the purine levels of or adding exogenous agents to the culture media. Collectively, the data provide strong evidence for the formation of a multi-enzyme complex, the "purinosome," to carry out de novo purine biosynthesis in cells.
                Bookmark

                Author and article information

                Journal
                Front Genet
                Front. Gene.
                Frontiers in Genetics
                Frontiers Research Foundation
                1664-8021
                03 April 2011
                20 June 2011
                2011
                : 2
                : 36
                Affiliations
                [1] 1simpleDivision of Nutritional Sciences, Cornell University Ithaca, NY, USA
                Author notes

                Edited by: Michael Felix Fenech, Commonwealth Scientific and Industrial Research Organisation, Australia

                Reviewed by: Dilip Ghosh, Neptune Bio-Innovations Pty Ltd, Australia; Sharon Ross, National Cancer Institute, USA

                *Correspondence: Patrick J. Stover, Division of Nutritional Sciences, Cornell University, 315 Savage Hall, Ithaca, NY 14853, USA. e-mail: PJS13@ 123456cornell.edu

                This article was submitted to Frontiers in Nutrigenomics, a aspecialty of Frontiers in Genetics.

                Article
                10.3389/fgene.2011.00036
                3268590
                22303332
                1a5e312b-ef1e-47ab-953c-b9f71b5669fa
                Copyright © 2011 Field, Anderson and Stover.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 04 March 2011
                : 08 June 2011
                Page count
                Figures: 13, Tables: 4, Equations: 0, References: 39, Pages: 13, Words: 8414
                Categories
                Genetics
                Original Research

                Genetics
                folate,5-formyltetrahydrofolate,purinosome,shmt,sumo,leucovorin,purine biosynthesis,mthfs
                Genetics
                folate, 5-formyltetrahydrofolate, purinosome, shmt, sumo, leucovorin, purine biosynthesis, mthfs

                Comments

                Comment on this article