Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Flightless-I regulates proinflammatory caspases by selectively modulating intracellular localization and caspase activity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Caspase-1 and caspase-11 are proinflammatory caspases that regulate cytokine production and leukocyte migration during pathogen infection. In an attempt to identify new intracellular regulators of caspase-11, we found that Flightless-I, a member of the gelsolin superfamily of actin-remodeling proteins, interacts and regulates both caspase-11 and caspase-1. Flightless-I targets caspase-11 to the Triton X-100–insoluble cytoskeleton fraction and the cell leading edge. In addition, Flightless-I inhibits caspase-1 activation and caspase-1–mediated interleukine-1β (IL-1β) maturation. The physiological relevance of these findings is supported by the opposing effects of Flightless-I overexpression and knockdown on caspase-1 activity and IL-1β maturation. Our results suggest that Flightless-I may be a bona fide caspase-1 inhibitor that acts through a mechanism similar to that of cytokine response modifier A, a potent caspase-1 inhibitor from the cowpox virus. Our study provides a new mechanism controlling the localization and activation of proinflammatory caspases.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes.

            Interleukin-1 beta (IL-1 beta)-converting enzyme cleaves the IL-1 beta precursor to mature IL-1 beta, an important mediator of inflammation. The identification of the enzyme as a unique cysteine protease and the design of potent peptide aldehyde inhibitors are described. Purification and cloning of the complementary DNA indicates that IL-1 beta-converting enzyme is composed of two nonidentical subunits that are derived from a single proenzyme, possibly by autoproteolysis. Selective inhibition of the enzyme in human blood monocytes blocks production of mature IL-1 beta, indicating that it is a potential therapeutic target.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              IAP family proteins--suppressors of apoptosis.

                Bookmark

                Author and article information

                Journal
                J Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                21 April 2008
                : 181
                : 2
                : 321-333
                Affiliations
                [1 ]Department of Cell Biology, Harvard Medical School, Boston, MA 02115
                [2 ]Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
                Author notes

                Correspondence to J. Yuan: jyuan@ 123456hms.harvard.edu

                Article
                200711082
                10.1083/jcb.200711082
                2315678
                18411310
                1facc7ab-a83c-4206-aa39-6eb49b757c09
                Copyright © 2008, The Rockefeller University Press
                History
                : 16 November 2007
                : 20 March 2008
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article