13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eradication of Biofilm-Mediated Methicillin-Resistant Staphylococcus aureus Infections In Vitro: Bacteriophage-Antibiotic Combination

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Bacterial biofilms are difficult to eradicate and can complicate many infections by forming on tissues and medical devices. Phage+antibiotic combinations (PAC) may be more active on biofilms than either type of agent alone, but it is difficult to predict which PAC regimens will be reliably effective. To establish a method for screening PAC combinations against Staphylococcus aureus biofilms, we conducted biofilm time-kill analyses (TKA) using various combinations of phage Sb-1 with clinically relevant antibiotics. We determined the activity of PAC against biofilm versus planktonic bacteria and investigated the emergence of resistance during (24 h) exposure to PAC. As expected, fewer treatment regimens were effective against biofilm than planktonic bacteria. In experiments with isogenic strain pairs, we also saw less activity of PACs against DNS-VISA mutants versus their respective parentals. The most effective treatment against both biofilm and planktonic bacteria was the phage+daptomycin+ceftaroline regimen, which met our stringent definition of bactericidal activity (>3 log 10 CFU/mL reduction). With the VISA-DNS strain 8015 and DNS strain 684, we detected anti-biofilm synergy between Sb-1 and DAP in the phage+daptomycin regimen (>2 log 10 CFU/mL reduction versus best single agent). We did not observe any bacterial resensitization to antibiotics following treatment, but phage resistance was avoided after exposure to PAC regimens for all tested strains. The release of bacterial membrane vesicles tended to be either unaffected or reduced by the various treatment regimens. Interestingly, phage yields from certain biofilm experiments were greater than from similar planktonic experiments, suggesting that Sb-1 might be more efficiently propagated on biofilm.

          IMPORTANCE Biofilm-associated multidrug-resistant infections pose significant challenges for antibiotic therapy. The extracellular polymeric matrix of biofilms presents an impediment for antibiotic diffusion, facilitating the emergence of multidrug-resistant populations. Some bacteriophages (phages) can move across the biofilm matrix, degrade it, and support antibiotic penetration. However, little is known about how phages and their hosts interact in the biofilm environment or how different phage+antibiotic combinations (PACs) impact biofilms in comparison to the planktonic state of bacteria, though scattered data suggest that phage+antibiotic synergy occurs more readily under biofilm-like conditions. Our results demonstrated that phage Sb-1 can infect MRSA strains both in biofilm and planktonic states and suggested PAC regimens worthy of further investigation as adjuncts to antibiotics.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Origins and evolution of antibiotic resistance.

          Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

            Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antibiotics versus biofilm: an emerging battleground in microbial communities

              Biofilm is a complex structure of microbiome having different bacterial colonies or single type of cells in a group; adhere to the surface. These cells are embedded in extracellular polymeric substances, a matrix which is generally composed of eDNA, proteins and polysaccharides, showed high resistance to antibiotics. It is one of the major causes of infection persistence especially in nosocomial settings through indwelling devices. Quorum sensing plays an important role in regulating the biofilm formation. There are many approaches being used to control infections by suppressing its formation but CRISPR-CAS (gene editing technique) and photo dynamic therapy (PDT) are proposed to be used as therapeutic approaches to subside bacterial biofim infections, especially caused by deadly drug resistant bad bugs.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                Microbiol Spectr
                Microbiol Spectr
                spectrum
                Microbiology Spectrum
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2165-0497
                29 March 2022
                Mar-Apr 2022
                29 March 2022
                : 10
                : 2
                : e00411-22
                Affiliations
                [a ] Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
                [b ] Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
                [c ] School of Medicine, Wayne State University, Detroit, Michigan, USA
                Ohio State University
                Author notes

                The authors declare no conflict of interest.

                Author information
                https://orcid.org/0000-0003-4019-2679
                https://orcid.org/0000-0001-7171-7015
                https://orcid.org/0000-0002-1094-043X
                https://orcid.org/0000-0002-4891-8625
                https://orcid.org/0000-0003-2220-0081
                Article
                00411-22 spectrum.00411-22
                10.1128/spectrum.00411-22
                9045164
                35348366
                206ab949-d27b-431e-a4bb-c44d1977853b
                Copyright © 2022 Kebriaei et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 1 February 2022
                : 4 March 2022
                Page count
                supplementary-material: 1, Figures: 3, Tables: 1, Equations: 0, References: 47, Pages: 10, Words: 5614
                Categories
                Research Article
                antimicrobial-chemotherapy, Antimicrobial Chemotherapy
                Custom metadata
                March/April 2022

                mrsa,bacteriophages,biofilms
                mrsa, bacteriophages, biofilms

                Comments

                Comment on this article