79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The diversity and function of ligninolytic genes in soil-inhabiting ascomycetes has not yet been elucidated, despite their possible role in plant litter decay processes. Among ascomycetes, Trichoderma reesei is a model organism of cellulose and hemicellulose degradation, used for its unique secretion ability especially for cellulase production. T. reesei has only been reported as a cellulolytic and hemicellulolytic organism although genome annotation revealed 6 laccase-like multicopper oxidase (LMCO) genes. The purpose of this work was i) to validate the function of a candidate LMCO gene from T. reesei, and ii) to reconstruct LMCO phylogeny and perform evolutionary analysis testing for positive selection.

          Results

          After homologous overproduction of a candidate LMCO gene, extracellular laccase activity was detected when ABTS or SRG were used as substrates, and the recombinant protein was purified to homogeneity followed by biochemical characterization. The recombinant protein, called TrLAC1, has a molecular mass of 104 kDa. Optimal temperature and pH were respectively 40-45°C and 4, by using ABTS as substrate. TrLAC1 showed broad pH stability range of 3 to 7. Temperature stability revealed that TrLAC1 is not a thermostable enzyme, which was also confirmed by unfolding studies monitored by circular dichroism. Evolutionary studies were performed to shed light on the LMCO family, and the phylogenetic tree was reconstructed using maximum-likelihood method. LMCO and classical laccases were clearly divided into two distinct groups. Finally, Darwinian selection was tested, and the results showed that positive selection drove the evolution of sequences leading to well-known laccases involved in ligninolysis. Positively-selected sites were observed that could be used as targets for mutagenesis and functional studies between classical laccases and LMCO from T. reesei.

          Conclusions

          Homologous production and evolutionary studies of the first LMCO from the biomass-degrading fungus T. reesei gives new insights into the physicochemical parameters and biodiversity in this family.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Codon-substitution models for heterogeneous selection pressure at amino acid sites.

          Comparison of relative fixation rates of synonymous (silent) and nonsynonymous (amino acid-altering) mutations provides a means for understanding the mechanisms of molecular sequence evolution. The nonsynonymous/synonymous rate ratio (omega = d(N)d(S)) is an important indicator of selective pressure at the protein level, with omega = 1 meaning neutral mutations, omega 1 diversifying positive selection. Amino acid sites in a protein are expected to be under different selective pressures and have different underlying omega ratios. We develop models that account for heterogeneous omega ratios among amino acid sites and apply them to phylogenetic analyses of protein-coding DNA sequences. These models are useful for testing for adaptive molecular evolution and identifying amino acid sites under diversifying selection. Ten data sets of genes from nuclear, mitochondrial, and viral genomes are analyzed to estimate the distributions of omega among sites. In all data sets analyzed, the selective pressure indicated by the omega ratio is found to be highly heterogeneous among sites. Previously unsuspected Darwinian selection is detected in several genes in which the average omega ratio across sites is 1. Genes undergoing positive selection include the beta-globin gene from vertebrates, mitochondrial protein-coding genes from hominoids, the hemagglutinin (HA) gene from human influenza virus A, and HIV-1 env, vif, and pol genes. Tests for the presence of positively selected sites and their subsequent identification appear quite robust to the specific distributional form assumed for omega and can be achieved using any of several models we implement. However, we encountered difficulties in estimating the precise distribution of omega among sites from real data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina).

            Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Laccases: a never-ending story.

              Laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) are blue multicopper oxidases that catalyze the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. In fungi, laccases carry out a variety of physiological roles during their life cycle. These enzymes are being increasingly evaluated for a variety of biotechnological applications due to their broad substrate range. In this review, the most recent studies on laccase structural features and catalytic mechanisms along with analyses of their expression are reported and examined with the aim of contributing to the discussion on their structure-function relationships. Attention has also been paid to the properties of enzymes endowed with unique characteristics and to fungal laccase multigene families and their organization.
                Bookmark

                Author and article information

                Journal
                BMC Biochem
                BMC Biochemistry
                BioMed Central
                1471-2091
                2010
                24 August 2010
                : 11
                : 32
                Affiliations
                [1 ]UMR-1163, INRA de Biotechnologie des Champignons Filamenteux, IFR86-BAIM. Universités de Provence et de la Méditerranée, ESIL, 163 avenue de Luminy, CP 925, 13288 Marseille Cedex 09, France
                [2 ]Universités Aix-Marseille 1 et 2, UMR-1163, 163 avenue de Luminy, CP925, 13288 Marseille Cedex 09, France
                [3 ]VTT Biotechnology: VTT Technical Research Centre of Finland, P.O. Box 1500, Tietotie 2, 02044 VTT Espoo Finland
                [4 ]Evolution Biologique et Modélisation: UMR 6639 CNRS Université de Aix Marseille, 3 place V. Hugo, 13331 Marseille, France
                Article
                1471-2091-11-32
                10.1186/1471-2091-11-32
                2939539
                20735824
                225dd7dd-b993-4f87-b943-c8608bd771a1
                Copyright ©2010 Levasseur et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 February 2010
                : 24 August 2010
                Categories
                Research Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article