7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genotypic composition and performance of pea-nodulating rhizobia from soils outside the native plant-host range

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cultivated soils need to shelter suitable rhizobia for legume cropping, especially in areas outside of the plant-host native range, where soils may lack efficient symbiotic partners. We analyzed the distribution patterns and traits of native rhizobia associated with Pisum sativum L. in soils of Hebei Province, a region that has recently experienced an expansion of pea production in China. A total of 43 rhizobial isolates were obtained from root-nodules and characterized genetically and symbiotically. The isolates discriminated into 12 genotypes as defined by PCR-RFLP of IGS DNA. Multiple locus sequence analysis (MLSA) based on the 16S rRNA, recA, atpD and gyrB of representative strains placed them into five clusters of four defined species ( R. sophorae, R. indicum, R. changzhiense, and R. anhuiense) and a novel Rhizobium genospecies. R. sophorae was the dominant group (58%) followed by R. indicum (23%). The other groups composed of R. changzhiense (14%), R. anhuiense (1 isolate) and the new genospecies (1 isolate), were minor and site-specific. Based on nodC phylogeny, all representatives were intermingled within the symbiovar viciae with R. sophorae and R. changzhiense being a new record. All the tested strains showed efficient symbiotic fixation on pea plants, with half of them exhibiting better plant biomass performance. This suggests that the pea-nodulating rhizobia in Hebei Province form a specific community of efficient symbiotic rhizobia on pea, distinct from those reported in other countries.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.

            CLUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W. The new system is easy to use, providing an integrated system for performing multiple sequence and profile alignments and analysing the results. CLUSTAL X displays the sequence alignment in a window on the screen. A versatile sequence colouring scheme allows the user to highlight conserved features in the alignment. Pull-down menus provide all the options required for traditional multiple sequence and profile alignment. New features include: the ability to cut-and-paste sequences to change the order of the alignment, selection of a subset of the sequences to be realigned, and selection of a sub-range of the alignment to be realigned and inserted back into the original alignment. Alignment quality analysis can be performed and low-scoring segments or exceptional residues can be highlighted. Quality analysis and realignment of selected residue ranges provide the user with a powerful tool to improve and refine difficult alignments and to trap errors in input sequences. CLUSTAL X has been compiled on SUN Solaris, IRIX5.3 on Silicon Graphics, Digital UNIX on DECstations, Microsoft Windows (32 bit) for PCs, Linux ELF for x86 PCs, and Macintosh PowerMac.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transport and metabolism in legume-rhizobia symbioses.

              Symbiotic nitrogen fixation by rhizobia in legume root nodules injects approximately 40 million tonnes of nitrogen into agricultural systems each year. In exchange for reduced nitrogen from the bacteria, the plant provides rhizobia with reduced carbon and all the essential nutrients required for bacterial metabolism. Symbiotic nitrogen fixation requires exquisite integration of plant and bacterial metabolism. Central to this integration are transporters of both the plant and the rhizobia, which transfer elements and compounds across various plant membranes and the two bacterial membranes. Here we review current knowledge of legume and rhizobial transport and metabolism as they relate to symbiotic nitrogen fixation. Although all legume-rhizobia symbioses have many metabolic features in common, there are also interesting differences between them, which show that evolution has solved metabolic problems in different ways to achieve effective symbiosis in different systems.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                04 July 2023
                2023
                : 14
                : 1201140
                Affiliations
                [1] 1College of Food and Bioengineering, Zhengzhou University of Light Industry , Zhengzhou, Henan Province, China
                [2] 2Collaborative Innovation Center for Food Production and Safety of Henan Province , Zhengzhou, Henan Province, China
                [3] 3LSTM, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, IRD , Montpellier, France
                [4] 4Institute of Crop Sciences, Chinese Academy of Agricultural Sciences , Beijing, China
                Author notes

                Edited by: Zhiyong Li, Shanghai Jiao Tong University, China

                Reviewed by: Luis Rey, Polytechnic University of Madrid, Spain; Qiang Chen, Sichuan Agricultural University, China

                *Correspondence: Junjie Zhang, kirka640@ 123456163.com
                Article
                10.3389/fmicb.2023.1201140
                10353855
                229e87ed-b038-4efe-a34a-a2e5207d6040
                Copyright © 2023 Zhang, Wang, Li, Brunel, Wang, Feng, Yang and Zong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 April 2023
                : 06 June 2023
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 51, Pages: 11, Words: 8134
                Categories
                Microbiology
                Original Research
                Custom metadata
                Microbial Symbioses

                Microbiology & Virology
                pisum sativum,rhizobium,symbiosis,genetic diversity,nodc gene,symbiovar viciae
                Microbiology & Virology
                pisum sativum, rhizobium, symbiosis, genetic diversity, nodc gene, symbiovar viciae

                Comments

                Comment on this article