0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The JAK1 Selective Inhibitor ABT 317 Blocks Signaling Through Interferon-γ and Common γ Chain Cytokine Receptors to Reverse Autoimmune Diabetes in NOD Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cytokines that signal through the JAK-STAT pathway, such as interferon-γ (IFN-γ) and common γ chain cytokines, contribute to the destruction of insulin-secreting β cells by CD8 + T cells in type 1 diabetes (T1D). We previously showed that JAK1/JAK2 inhibitors reversed autoimmune insulitis in non-obese diabetic (NOD) mice and also blocked IFN-γ mediated MHC class I upregulation on β cells. Blocking interferons on their own does not prevent diabetes in knockout NOD mice, so we tested whether JAK inhibitor action on signaling downstream of common γ chain cytokines, including IL-2, IL-7 IL-15, and IL-21, may also affect the progression of diabetes in NOD mice. Common γ chain cytokines activate JAK1 and JAK3 to regulate T cell proliferation. We used a JAK1-selective inhibitor, ABT 317, to better understand the specific role of JAK1 signaling in autoimmune diabetes. ABT 317 reduced IL-21, IL-2, IL-15 and IL-7 signaling in T cells and IFN-γ signaling in β cells, but ABT 317 did not affect GM-CSF signaling in granulocytes. When given in vivo to NOD mice, ABT 317 reduced CD8 + T cell proliferation as well as the number of KLRG + effector and CD44 hiCD62L lo effector memory CD8 + T cells in spleen. ABT 317 also prevented MHC class I upregulation on β cells. Newly diagnosed diabetes was reversed in 94% NOD mice treated twice daily with ABT 317 while still on treatment at 40 days and 44% remained normoglycemic after a further 60 days from discontinuing the drug. Our results indicate that ABT 317 blocks common γ chain cytokines in lymphocytes and interferons in lymphocytes and β cells and are thus more effective against diabetes pathogenesis than IFN-γ receptor deficiency alone. Our studies suggest use of this class of drug for the treatment of type 1 diabetes.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Tofacitinib or adalimumab versus placebo in rheumatoid arthritis.

          Tofacitinib (CP-690,550) is a novel oral Janus kinase inhibitor that is being investigated for the treatment of rheumatoid arthritis. In this 12-month, phase 3 trial, 717 patients who were receiving stable doses of methotrexate were randomly assigned to 5 mg of tofacitinib twice daily, 10 mg of tofacitinib twice daily, 40 mg of adalimumab once every 2 weeks, or placebo. At month 3, patients in the placebo group who did not have a 20% reduction from baseline in the number of swollen and tender joints were switched in a blinded fashion to either 5 mg or 10 mg of tofacitinib twice daily; at month 6, all patients still receiving placebo were switched to tofacitinib in a blinded fashion. The three primary outcome measures were a 20% improvement at month 6 in the American College of Rheumatology scale (ACR 20); the change from baseline to month 3 in the score on the Health Assessment Questionnaire-Disability Index (HAQ-DI) (which ranges from 0 to 3, with higher scores indicating greater disability); and the percentage of patients at month 6 who had a Disease Activity Score for 28-joint counts based on the erythrocyte sedimentation rate (DAS28-4[ESR]) of less than 2.6 (with scores ranging from 0 to 9.4 and higher scores indicating greater disease activity). At month 6, ACR 20 response rates were higher among patients receiving 5 mg or 10 mg of tofacitinib (51.5% and 52.6%, respectively) and among those receiving adalimumab (47.2%) than among those receiving placebo (28.3%) (P<0.001 for all comparisons). There were also greater reductions in the HAQ-DI score at month 3 and higher percentages of patients with a DAS28-4(ESR) below 2.6 at month 6 in the active-treatment groups than in the placebo group. Adverse events occurred more frequently with tofacitinib than with placebo, and pulmonary tuberculosis developed in two patients in the 10-mg tofacitinib group. Tofacitinib was associated with an increase in both low-density and high-density lipoprotein cholesterol levels and with reductions in neutrophil counts. In patients with rheumatoid arthritis receiving background methotrexate, tofacitinib was significantly superior to placebo and was numerically similar to adalimumab in efficacy. (Funded by Pfizer; ORAL Standard ClinicalTrials.gov number, NCT00853385.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            JAK inhibition as a therapeutic strategy for immune and inflammatory diseases

            The discovery of cytokines as key drivers of immune-mediated diseases has spurred efforts to target their associated signalling pathways. Janus kinases (JAKs) are essential signalling mediators downstream of many pro-inflammatory cytokines, and small-molecule inhibitors of JAKs (jakinibs) have gained traction as safe and efficacious options for the treatment of inflammation-driven pathologies such as rheumatoid arthritis, psoriasis and inflammatory bowel disease. Building on the clinical success of first-generation jakinibs, second-generation compounds that claim to be more selective are currently undergoing development and proceeding to clinical trials. However, important questions remain about the advantages and limitations of improved JAK selectivity, optimal routes and dosing regimens and how best to identify patients who will benefit from jakinibs. This Review discusses the biology of jakinibs from a translational perspective, focusing on recent insights from clinical trials, the development of novel agents and the use of jakinibs in a spectrum of immune and inflammatory diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytokine control of memory T-cell development and survival.

              Evidence has accumulated that cytokines have a fundamental role in the differentiation of memory T cells. Here, we follow the CD8+ T cell from initial activation to memory-cell generation, indicating the checkpoints at which cytokines determine the fate of the T cell. Members of the common cytokine-receptor gamma-chain (gammac)-cytokine family--in particular, interleukin-7 (IL-7) and IL-15--act at each stage of the immune response to promote proliferation and survival. In this manner, a stable and protective, long-lived memory CD8+ T-cell pool can be propagated and maintained.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                04 December 2020
                2020
                : 11
                : 588543
                Affiliations
                [1] 1 Immunology and Diabetes Unit, St Vincent’s Institute , Fitzroy, VIC, Australia
                [2] 2 Department of Medicine, St Vincent’s Hospital, The University of Melbourne , Fitzroy, VIC, Australia
                [3] 3 AbbVie Bioresearch Center , Worcester, MA, United States
                Author notes

                Edited by: Myung-Shik Lee, Yonsei University Health System, South Korea

                Reviewed by: F. Susan Wong, Cardiff University, United Kingdom; Sunshin Kim, National Cancer Center, South Korea

                *Correspondence: Helen E. Thomas, hthomas@ 123456svi.edu.au

                This article was submitted to Autoimmune and Autoinflammatory Disorders, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.588543
                7746546
                33343569
                24b14055-c8d5-4655-926f-6a9562fe3e8a
                Copyright © 2020 Ge, Jhala, Fynch, Akazawa, Litwak, Pappas, Catterall, Vakil, Long, Olson, Krishnamurthy, Kay and Thomas

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 July 2020
                : 04 November 2020
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 53, Pages: 12, Words: 5671
                Funding
                Funded by: National Health and Medical Research Council 10.13039/501100000925
                Award ID: GNT1126237
                Funded by: Juvenile Diabetes Research Foundation International 10.13039/100000901
                Categories
                Immunology
                Original Research

                Immunology
                jak-stat signaling pathway,cytokines,non-obese diabetic mouse,cd8+ t cell,type 1 diabetes mellitus

                Comments

                Comment on this article