37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inflation in an exponential scalar model and finite-time singularity induced instability

      ,
      Physical Review D
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The galileon as a local modification of gravity

          In the DGP model, the ``self-accelerating'' solution is plagued by a ghost instability, which makes the solution untenable. This fact as well as all interesting departures from GR are fully captured by a four-dimensional effective Lagrangian, valid at distances smaller than the present Hubble scale. The 4D effective theory involves a relativistic scalar \pi, universally coupled to matter and with peculiar derivative self-interactions. In this paper, we study the connection between self-acceleration and the presence of ghosts for a quite generic class of theories that modify gravity in the infrared. These theories are defined as those that at distances shorter than cosmological, reduce to a certain generalization of the DGP 4D effective theory. We argue that for infrared modifications of GR locally due to a universally coupled scalar, our generalization is the only one that allows for a robust implementation of the Vainshtein effect--the decoupling of the scalar from matter in gravitationally bound systems--necessary to recover agreement with solar system tests. Our generalization involves an internal ``galilean'' invariance, under which \pi's gradient shifts by a constant. This symmetry constrains the structure of the \pi Lagrangian so much so that in 4D there exist only five terms that can yield sizable non-linearities without introducing ghosts. We show that for such theories in fact there are ``self-accelerating'' deSitter solutions with no ghost-like instabilities. In the presence of compact sources, these solutions can support spherically symmetric, Vainshtein-like non-linear perturbations that are also stable against small fluctuations. [Short version for arxiv]
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Constraints on generalized inflationary cosmologies

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Phantom Energy and Cosmic Doomsday

              Cosmologists have long wondered whether the Universe will eventually re-collapse and end with a Big Crunch, or expand forever, becoming increasingly cold and empty. Recent evidence for a flat Universe, possibly with a cosmological constant or some other sort of negative-pressure dark energy, has suggested that our fate is the latter. However, the data may actually be pointing toward an astonishingly different cosmic end game. Here, we explore the consequences that follow if the dark energy is phantom energy, in which the sum of the pressure and energy density is negative. The positive phantom-energy density becomes infinite in finite time, overcoming all other forms of matter, such that the gravitational repulsion rapidly brings our brief epoch of cosmic structure to a close. The phantom energy rips apart the Milky Way, solar system, Earth, and ultimately the molecules, atoms, nuclei, and nucleons of which we are composed, before the death of the Universe in a ``Big Rip''.
                Bookmark

                Author and article information

                Journal
                PRVDAQ
                Physical Review D
                Phys. Rev. D
                American Physical Society (APS)
                1550-7998
                1550-2368
                July 2015
                July 31 2015
                : 92
                : 2
                Article
                10.1103/PhysRevD.92.024058
                25a2ba8e-1ee5-4d3b-89b6-13214daf90d2
                © 2015

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article