3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Risk Assessment and Prediction of Rainstorm and Flood Disaster Based on Henan Province, China

      1 , 1 , 1
      Mathematical Problems in Engineering
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To reasonably evaluate and predict the loss of rainstorm and flood disaster, this study is based on the rainfall data and rainstorm and flood disaster data of 18 cities in Henan Province from 2010 to 2020, using GIS technology and weighted comprehensive evaluation method to analyze the risk of rainstorm and flood disaster factors in various regions. The four risk factors of hazard risk, hazard-pregnant environment sensitivity, hazard-bearing body vulnerability, and disaster resilience were analyzed in compartment analysis. At the same time, a new rainstorm and flood disaster prediction model was constructed in combination with the hybrid PSO-SVR algorithm. The research results show that there are many rivers in Henan Province, the terrain tends to be higher in the west and lower in the east, and most areas are low plains, making most cities in Henan Province at a moderate risk level. For the more developed cities such as Zhengzhou, Luoyang, and Nanyang, the hazard risk, sensitivity, vulnerability, and disaster resistance are high, and they are prone to heavy rains and floods. For the economically underdeveloped, the terrain is high or hills, such as Sanmenxia City; Xinyang City and other places have low hazard risk and are not prone to rainstorms and floods. By constructing a hybrid PSO-SVR model, selecting two representative cities of Zhengzhou and Luoyang, and predicting the daily rainfall, the number of disasters, and the direct economic loss, the calculated RMSE and MAPE values are both less than GA-SVR, the traditional SVR, and BPNN models, which have verified the superiority of the model proposed in this study and the practical value it brings. To further verify the prediction accuracy of the hybrid model, the average value of RMSE and MAPE of other 16 cities are calculated, and the result is still smaller than other three models, and the study can provide some decision-making references for the urban rainstorm and flood management.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Human contribution to more-intense precipitation extremes.

          Extremes of weather and climate can have devastating effects on human society and the environment. Understanding past changes in the characteristics of such events, including recent increases in the intensity of heavy precipitation events over a large part of the Northern Hemisphere land area, is critical for reliable projections of future changes. Given that atmospheric water-holding capacity is expected to increase roughly exponentially with temperature--and that atmospheric water content is increasing in accord with this theoretical expectation--it has been suggested that human-influenced global warming may be partly responsible for increases in heavy precipitation. Because of the limited availability of daily observations, however, most previous studies have examined only the potential detectability of changes in extreme precipitation through model-model comparisons. Here we show that human-induced increases in greenhouse gases have contributed to the observed intensification of heavy precipitation events found over approximately two-thirds of data-covered parts of Northern Hemisphere land areas. These results are based on a comparison of observed and multi-model simulated changes in extreme precipitation over the latter half of the twentieth century analysed with an optimal fingerprinting technique. Changes in extreme precipitation projected by models, and thus the impacts of future changes in extreme precipitation, may be underestimated because models seem to underestimate the observed increase in heavy precipitation with warming.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Framing vulnerability, risk and societal responses: the MOVE framework

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Catastrophic Natural Disasters and Economic Growth

                Bookmark

                Author and article information

                Contributors
                Journal
                Mathematical Problems in Engineering
                Mathematical Problems in Engineering
                Hindawi Limited
                1563-5147
                1024-123X
                February 18 2022
                February 18 2022
                : 2022
                : 1-17
                Affiliations
                [1 ]Henan University of Science and Technology, Luoyang 471023, China
                Article
                10.1155/2022/5310920
                25b2236f-deef-4f23-b54a-08781266fa70
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article