27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      La FAM fatale: USP9X in development and disease

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deubiquitylating enzymes (DUBs), act downstream of ubiquitylation. As such, these post-post-translational modifiers function as the final arbitrators of a protein substrate’s ubiquitylation status, thus regulating its fate. In most instances, DUBs moderate the absolute level of a substrate, its locality or activity, rather than being an “all-or-none” phenomenon. Yet, disruption of this quantitative regulation can produce dramatic qualitative differences. The ubiquitin-specific protease 9X (USP9X/FAM) is a substrate-specific DUB, which displays an extraordinarily high level of sequence conservation from Drosophila to mammals. It is primarily the recent revelations of USP9X’s pivotal role in human cancers, both as oncogene or tumour suppressor, in developmental disorders including intellectual disability, epilepsy, autism and developmental delay that has led to a subsequent re-examination of its molecular and cellular functions. Results from experimental animal models have implicated USP9X in neurodegeneration, including Parkinson’s and Alzheimer’s disease, as well as autoimmune diseases. In this review, we describe the current and accumulated knowledge on the molecular, cellular and developmental aspects of USP9X function within the context of the biological consequences during normal development and disease.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

          The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A genomic and functional inventory of deubiquitinating enzymes.

            Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory of the deubiquitinating enzymes encoded in the human genome. In addition, we review the literature concerning these enzymes, with particular emphasis on their function, specificity, and the regulation of their activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche.

              In adult skin, each hair follicle contains a reservoir of stem cells (the bulge), which can be mobilized to regenerate the new follicle with each hair cycle and to reepithelialize epidermis during wound repair. Here we report new methods that permit their clonal analyses and engraftment and demonstrate the two defining features of stem cells, namely self-renewal and multipotency. We also show that, within the bulge, there are two distinct populations, one of which maintains basal lamina contact and temporally precedes the other, which is suprabasal and arises only after the start of the first postnatal hair cycle. This spatial distinction endows them with discrete transcriptional programs, but surprisingly, both populations are growth inhibited in the niche but can self-renew in vitro and make epidermis and hair when grafted. These findings suggest that the niche microenvironment imposes intrinsic "stemness" features without restricting the establishment of epithelial polarity and changes in gene expression.
                Bookmark

                Author and article information

                Contributors
                +61 7 3735 4410 , s.wood@griffith.edu.au
                Journal
                Cell Mol Life Sci
                Cell. Mol. Life Sci
                Cellular and Molecular Life Sciences
                Springer Basel (Basel )
                1420-682X
                1420-9071
                12 February 2015
                12 February 2015
                2015
                : 72
                : 11
                : 2075-2089
                Affiliations
                [ ]The Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD Australia
                [ ]School of Paediatrics and Reproductive Health and The Robinson Research Institute, The University of Adelaide, Adelaide, Australia
                Article
                1851
                10.1007/s00018-015-1851-0
                4427618
                25672900
                2751503a-46de-49bb-a819-cefb4be2e477
                © The Author(s) 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 6 January 2015
                : 2 February 2015
                : 4 February 2015
                Categories
                Review
                Custom metadata
                © Springer Basel 2015

                Molecular biology
                ubiquitin,fat facets,embryo,stem cells
                Molecular biology
                ubiquitin, fat facets, embryo, stem cells

                Comments

                Comment on this article