Blog
About

19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Overview of the Marine Roseobacter Lineage

      1 , 2 , 3

      Applied and Environmental Microbiology

      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 91

          • Record: found
          • Abstract: not found
          • Article: not found

          Identification of common molecular subsequences.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes.

            The cyanobacterium Prochlorococcus is the dominant oxygenic phototroph in the tropical and subtropical regions of the world's oceans. It can grow at a range of depths over which light intensities can vary by up to 4 orders of magnitude. This broad depth distribution has been hypothesized to stem from the coexistence of genetically different populations adapted for growth at high- and low-light intensities. Here we report direct evidence supporting this hypothesis, which has been generated by isolating and analysing distinct co-occurring populations of Prochlorococcus at two locations in the North Atlantic. Co-isolates from the same water sample have very different light-dependent physiologies, one growing maximally at light intensities at which the other is completely photoinhibited. Despite this ecotypic differentiation, the co-isolates have 97% similarity in their 16S ribosomal RNA sequences, demonstrating that molecular microdiversity, commonly observed in microbial systems, can be due to the coexistence of closely related, physiologically distinct populations. The coexistence and distribution of multiple ecotypes permits the survival of the population as a whole over a broader range of environmental conditions than would be possible for a homogeneous population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics of bacterial community composition and activity during a mesocosm diatom bloom.

              Bacterial community composition, enzymatic activities, and carbon dynamics were examined during diatom blooms in four 200-liter laboratory seawater mesocosms. The objective was to determine whether the dramatic shifts in growth rates and ectoenzyme activities, which are commonly observed during the course of phytoplankton blooms and their subsequent demise, could result from shifts in bacterial community composition. Nutrient enrichment of metazoan-free seawater resulted in diatom blooms dominated by a Thalassiosira sp., which peaked 9 days after enrichment ( approximately 24 microg of chlorophyll a liter(-1)). At this time bacterial abundance abruptly decreased from 2.8 x 10(6) to 0.75 x 10(6) ml(-1), and an analysis of bacterial community composition, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments, revealed the disappearance of three dominant phylotypes. Increased viral and flagellate abundances suggested that both lysis and grazing could have played a role in the observed phylotype-specific mortality. Subsequently, new phylotypes appeared and bacterial production, abundance, and enzyme activities shifted from being predominantly associated with the 1.0-microm size fraction, indicating a pronounced microbial colonization of particles. Sequencing of DGGE bands suggested that the observed rapid and extensive colonization of particulate matter was mainly by specialized alpha-Proteobacteria- and Cytophagales-related phylotypes. These particle-associated bacteria had high growth rates as well as high cell-specific aminopeptidase, beta-glucosidase, and lipase activities. Rate measurements as well as bacterial population dynamics were almost identical among the mesocosms indicating that the observed bacterial community dynamics were systematic and repeatable responses to the manipulated conditions.
                Bookmark

                Author and article information

                Journal
                Applied and Environmental Microbiology
                AEM
                American Society for Microbiology
                0099-2240
                1098-5336
                October 2005
                October 2005
                : 71
                : 10
                : 5665-5677
                Affiliations
                [1 ] Department of Microbiology, University of Tennessee, Knoxville, Tennessee
                [2 ] Department of Microbiology and Cell Biology, University of La Laguna, La Laguna, Spain
                [3 ] Department of Marine Sciences, University of Georgia, Athens, Georgia
                Article
                10.1128/AEM.71.10.5665-5677.2005
                1265941
                16204474
                © 2005
                Product
                Self URI (article page): https://AEM.asm.org/content/71/10/5665

                Comments

                Comment on this article