0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel risk signature based on liquid-liquid phase separation-related genes reveals prognostic and tumour microenvironmental features in clear cell renal cell carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Clear cell renal cell carcinoma(ccRCC) is one of the most common malignancies. However, there are still many barriers to its underlying causes, early diagnostic techniques and therapeutic approaches.

          Materials and Methods: The Cancer Genome Atlas (TCGA)- Kidney renal clear cell (KIRC) cohort differentially analysed liquid-liquid phase separation (LLPS)-related genes from the DrLLPS website. Univariate and multivariate Cox regression analyses and LASSO regression analyses were used to construct prognostic models. The E-MTAB-1980 cohort was used for external validation. Then, potential functions, immune infiltration analysis, and mutational landscapes were analysed for the high-risk and low-risk groups. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) experiments as well as single-cell analyses validated the genes key to the model.

          Results: We screened 174 LLPS-related genes in ccRCC and constructed a risk signature consisting of five genes (CLIC5, MXD3, NUF2, PABPC1L, PLK1). The high-risk group was found to be associated with worse prognosis in different subgroups. A nomogram constructed by combining age and tumour stage had a strong predictive power for the prognosis of ccRCC patients. In addition, there were differences in pathway enrichment, immune cell infiltration, and mutational landscapes between the two groups. The results of qRT-PCR in renal cancer cell lines and renal cancer tissues were consistent with the biosignature prediction. Three single-cell data of GSE159115, GSE139555, and GSE121636 were analysed for differences in the presence of these five genes in different cells.

          Conclusions: We developed a risk signature constructed based on the five LLPS-related genes and can have a high ability to predict the prognosis of ccRCC patients, further providing a strong support for clinical decision-making.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          limma powers differential expression analyses for RNA-sequencing and microarray studies

          limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The blockade of immune checkpoints in cancer immunotherapy.

            Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Cancer statistics, 2023

              Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries and mortality data collected by the National Center for Health Statistics. In 2023, 1,958,310 new cancer cases and 609,820 cancer deaths are projected to occur in the United States. Cancer incidence increased for prostate cancer by 3% annually from 2014 through 2019 after two decades of decline, translating to an additional 99,000 new cases; otherwise, however, incidence trends were more favorable in men compared to women. For example, lung cancer in women decreased at one half the pace of men (1.1% vs. 2.6% annually) from 2015 through 2019, and breast and uterine corpus cancers continued to increase, as did liver cancer and melanoma, both of which stabilized in men aged 50 years and older and declined in younger men. However, a 65% drop in cervical cancer incidence during 2012 through 2019 among women in their early 20s, the first cohort to receive the human papillomavirus vaccine, foreshadows steep reductions in the burden of human papillomavirus-associated cancers, the majority of which occur in women. Despite the pandemic, and in contrast with other leading causes of death, the cancer death rate continued to decline from 2019 to 2020 (by 1.5%), contributing to a 33% overall reduction since 1991 and an estimated 3.8 million deaths averted. This progress increasingly reflects advances in treatment, which are particularly evident in the rapid declines in mortality (approximately 2% annually during 2016 through 2020) for leukemia, melanoma, and kidney cancer, despite stable/increasing incidence, and accelerated declines for lung cancer. In summary, although cancer mortality rates continue to decline, future progress may be attenuated by rising incidence for breast, prostate, and uterine corpus cancers, which also happen to have the largest racial disparities in mortality.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 April 2024
                27 March 2024
                : 16
                : 7
                : 6118-6134
                Affiliations
                [1 ]Department of Urology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, P.R. China
                [2 ]Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
                [3 ]Department of Surgery, Fuzhou First People’s Hospital, Fuzhou 344000, Jiangxi, China
                Author notes
                [*]

                Equal contribution

                Correspondence to: Shaoxing Zhu; email: zsxing2005@126.com, https://orcid.org/0009-0009-6801-5309
                Correspondence to: Ru Chen; email: chenru99999@126.com, https://orcid.org/0009-0004-7315-8607
                Article
                205691 205691
                10.18632/aging.205691
                11042959
                38546385
                28fbb137-0652-43d4-8f58-40a648bacb08
                Copyright: © 2024 Lu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 September 2023
                : 07 February 2024
                Categories
                Research Paper

                Cell biology
                clear cell renal cell carcinoma,liquid-liquid phase separation,risk signature,tumour microenvironment,prognostic

                Comments

                Comment on this article