31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein structure alignment beyond spatial proximity

      research-article
      1 , 1 , 1 , a , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein structure alignment is a fundamental problem in computational structure biology. Many programs have been developed for automatic protein structure alignment, but most of them align two protein structures purely based upon geometric similarity without considering evolutionary and functional relationship. As such, these programs may generate structure alignments which are not very biologically meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments much more consistent with manually-curated alignments than other automatic tools especially when proteins under consideration are remote homologs. These results imply that in addition to geometric similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein structures.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Protein homology detection by HMM-HMM comparison.

          Protein homology detection and sequence alignment are at the basis of protein structure prediction, function prediction and evolution. We have generalized the alignment of protein sequences with a profile hidden Markov model (HMM) to the case of pairwise alignment of profile HMMs. We present a method for detecting distant homologous relationships between proteins based on this approach. The method (HHsearch) is benchmarked together with BLAST, PSI-BLAST, HMMER and the profile-profile comparison tools PROF_SIM and COMPASS, in an all-against-all comparison of a database of 3691 protein domains from SCOP 1.63 with pairwise sequence identities below 20%.Sensitivity: When the predicted secondary structure is included in the HMMs, HHsearch is able to detect between 2.7 and 4.2 times more homologs than PSI-BLAST or HMMER and between 1.44 and 1.9 times more than COMPASS or PROF_SIM for a rate of false positives of 10%. Approximately half of the improvement over the profile-profile comparison methods is attributable to the use of profile HMMs in place of simple profiles. Alignment quality: Higher sensitivity is mirrored by an increased alignment quality. HHsearch produced 1.2, 1.7 and 3.3 times more good alignments ('balanced' score >0.3) than the next best method (COMPASS), and 1.6, 2.9 and 9.4 times more than PSI-BLAST, at the family, superfamily and fold level, respectively.Speed: HHsearch scans a query of 200 residues against 3691 domains in 33 s on an AMD64 2GHz PC. This is 10 times faster than PROF_SIM and 17 times faster than COMPASS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein structure alignment by incremental combinatorial extension (CE) of the optimal path.

            A new algorithm is reported which builds an alignment between two protein structures. The algorithm involves a combinatorial extension (CE) of an alignment path defined by aligned fragment pairs (AFPs) rather than the more conventional techniques using dynamic programming and Monte Carlo optimization. AFPs, as the name suggests, are pairs of fragments, one from each protein, which confer structure similarity. AFPs are based on local geometry, rather than global features such as orientation of secondary structures and overall topology. Combinations of AFPs that represent possible continuous alignment paths are selectively extended or discarded thereby leading to a single optimal alignment. The algorithm is fast and accurate in finding an optimal structure alignment and hence suitable for database scanning and detailed analysis of large protein families. The method has been tested and compared with results from Dali and VAST using a representative sample of similar structures. Several new structural similarities not detected by these other methods are reported. Specific one-on-one alignments and searches against all structures as found in the Protein Data Bank (PDB) can be performed via the Web at http://cl.sdsc.edu/ce.html.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How significant is a protein structure similarity with TM-score = 0.5?

              Protein structure similarity is often measured by root mean squared deviation, global distance test score and template modeling score (TM-score). However, the scores themselves cannot provide information on how significant the structural similarity is. Also, it lacks a quantitative relation between the scores and conventional fold classifications. This article aims to answer two questions: (i) what is the statistical significance of TM-score? (ii) What is the probability of two proteins having the same fold given a specific TM-score? We first made an all-to-all gapless structural match on 6684 non-homologous single-domain proteins in the PDB and found that the TM-scores follow an extreme value distribution. The data allow us to assign each TM-score a P-value that measures the chance of two randomly selected proteins obtaining an equal or higher TM-score. With a TM-score at 0.5, for instance, its P-value is 5.5 x 10(-7), which means we need to consider at least 1.8 million random protein pairs to acquire a TM-score of no less than 0.5. Second, we examine the posterior probability of the same fold proteins from three datasets SCOP, CATH and the consensus of SCOP and CATH. It is found that the posterior probability from different datasets has a similar rapid phase transition around TM-score=0.5. This finding indicates that TM-score can be used as an approximate but quantitative criterion for protein topology classification, i.e. protein pairs with a TM-score >0.5 are mostly in the same fold while those with a TM-score <0.5 are mainly not in the same fold.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                14 March 2013
                2013
                : 3
                : 1448
                Affiliations
                [1 ]Toyota Technological Institute at Chicago , USA 60637
                Author notes
                Article
                srep01448
                10.1038/srep01448
                3596798
                23486213
                2aac4dcd-f275-4050-9203-b9bcb36c7b23
                Copyright © 2013, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 15 November 2012
                : 25 February 2013
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article