1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The evolving battle between yellow rust and wheat: implications for global food security

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wheat ( Triticum aestivum L.) is a global commodity, and its production is a key component underpinning worldwide food security. Yellow rust, also known as stripe rust, is a wheat disease caused by the fungus Puccinia striiformis Westend f. sp. tritici ( Pst), and results in yield losses in most wheat growing areas. Recently, the rapid global spread of genetically diverse sexually derived Pst races, which have now largely replaced the previous clonally propagated slowly evolving endemic populations, has resulted in further challenges for the protection of global wheat yields. However, advances in the application of genomics approaches, in both the host and pathogen, combined with classical genetic approaches, pathogen and disease monitoring, provide resources to help increase the rate of genetic gain for yellow rust resistance via wheat breeding while reducing the carbon footprint of the crop. Here we review key elements in the evolving battle between the pathogen and host, with a focus on solutions to help protect future wheat production from this globally important disease.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Shifting the limits in wheat research and breeding using a fully annotated reference genome

          An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogen population genetics, evolutionary potential, and durable resistance.

            We hypothesize that the evolutionary potential of a pathogen population is reflected in its population genetic structure. Pathogen populations with a high evolutionary potential are more likely to overcome genetic resistance than pathogen populations with a low evolutionary potential. We propose a flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure. According to this framework, pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates. The lowest risk pathogens are those with strict asexual reproduction, low potential for gene flow, small effective population sizes, and low mutation rates. We present examples of high-risk and low-risk pathogens. We propose general guidelines for a rational approach to breed durable resistance according to the evolutionary potential of the pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat.

              Agricultural crops benefit from resistance to pathogens that endures over years and generations of both pest and crop. Durable disease resistance, which may be partial or complete, can be controlled by several genes. Some of the most devastating fungal pathogens in wheat are leaf rust, stripe rust, and powdery mildew. The wheat gene Lr34 has supported resistance to these pathogens for more than 50 years. Lr34 is now shared by wheat cultivars around the world. Here, we show that the LR34 protein resembles adenosine triphosphate-binding cassette transporters of the pleiotropic drug resistance subfamily. Alleles of Lr34 conferring resistance or susceptibility differ by three genetic polymorphisms. The Lr34 gene, which functions in the adult plant, stimulates senescence-like processes in the flag leaf tips and edges.
                Bookmark

                Author and article information

                Contributors
                james.cockram@niab.com
                Journal
                Theor Appl Genet
                Theor Appl Genet
                TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0040-5752
                1432-2242
                25 November 2021
                25 November 2021
                2022
                : 135
                : 3
                : 741-753
                Affiliations
                [1 ]GRID grid.17595.3f, ISNI 0000 0004 0383 6532, John Bingham Laboratory, , NIAB, ; 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
                [2 ]GRID grid.5335.0, ISNI 0000000121885934, Department of Plant Sciences, , University of Cambridge, ; Downing Street, Cambridge, CB2 3EA UK
                [3 ]GRID grid.426884.4, ISNI 0000 0001 0170 6644, Present Address: Scotland’s Rural College (SRUC), ; The King’s Buildings, West Mains Road, Edinburgh, EH9 3JG UK
                Author notes

                Communicated by Rajeev K. Varshney.

                Author information
                http://orcid.org/0000-0002-1014-6463
                Article
                3983
                10.1007/s00122-021-03983-z
                8942934
                34821981
                2c798b93-aa21-4fdd-8632-f829c74d7bea
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 May 2021
                : 21 October 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000268, Biotechnology and Biological Sciences Research Council;
                Award ID: DTP PhD award
                Award ID: BB/N00518X/1
                Award Recipient :
                Categories
                Review
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2022

                Genetics
                Genetics

                Comments

                Comment on this article