0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Malnutrition on the Improvement of Physical Function by Intradialytic Resistance Exercise in Patients Undergoing Hemodialysis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Investigation of the freely available easy-to-use software ‘EZR' for medical statistics

          Y Kanda (2012)
          Although there are many commercially available statistical software packages, only a few implement a competing risk analysis or a proportional hazards regression model with time-dependent covariates, which are necessary in studies on hematopoietic SCT. In addition, most packages are not clinician friendly, as they require that commands be written based on statistical languages. This report describes the statistical software ‘EZR' (Easy R), which is based on R and R commander. EZR enables the application of statistical functions that are frequently used in clinical studies, such as survival analyses, including competing risk analyses and the use of time-dependent covariates, receiver operating characteristics analyses, meta-analyses, sample size calculation and so on, by point-and-click access. EZR is freely available on our website (http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmed.html) and runs on both Windows (Microsoft Corporation, USA) and Mac OS X (Apple, USA). This report provides instructions for the installation and operation of EZR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meaningful change and responsiveness in common physical performance measures in older adults.

            To estimate the magnitude of small meaningful and substantial individual change in physical performance measures and evaluate their responsiveness. Secondary data analyses using distribution- and anchor-based methods to determine meaningful change. Secondary analysis of data from an observational study and clinical trials of community-dwelling older people and subacute stroke survivors. Older adults with mobility disabilities in a strength training trial (n=100), subacute stroke survivors in an intervention trial (n=100), and a prospective cohort of community-dwelling older people (n=492). Gait speed, Short Physical Performance Battery (SPPB), 6-minute-walk distance (6MWD), and self-reported mobility. Most small meaningful change estimates ranged from 0.04 to 0.06 m/s for gait speed, 0.27 to 0.55 points for SPPB, and 19 to 22 m for 6MWD. Most substantial change estimates ranged from 0.08 to 0.14 m/s for gait speed, 0.99 to 1.34 points for SPPB, and 47 to 49 m for 6MWD. Based on responsiveness indices, per-group sample sizes for clinical trials ranged from 13 to 42 for substantial change and 71 to 161 for small meaningful change. Best initial estimates of small meaningful change are near 0.05 m/s for gait speed, 0.5 points for SPPB, and 20 m for 6MWD and of substantial change are near 0.10 m/s for gait speed, 1.0 point for SPPB, and 50 m for 6MWD. For clinical use, substantial change in these measures and small change in gait speed and 6MWD, but not SPPB, are detectable. For research use, these measures yield feasible sample sizes for detecting meaningful change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dose–Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysis

              Background Resistance training (RT) is an intervention frequently used to improve muscle strength and morphology in old age. However, evidence-based, dose–response relationships regarding specific RT variables (e.g., training period, frequency, intensity, volume) are unclear in healthy old adults. Objectives The aims of this systematic review and meta-analysis were to determine the general effects of RT on measures of muscle strength and morphology and to provide dose–response relationships of RT variables through an analysis of randomized controlled trials (RCTs) that could improve muscle strength and morphology in healthy old adults. Data Sources A computerized, systematic literature search was performed in the electronic databases PubMed, Web of Science, and The Cochrane Library from January 1984 up to June 2015 to identify all RCTs related to RT in healthy old adults. Study Eligibility Criteria The initial search identified 506 studies, with a final yield of 25 studies. Only RCTs that examined the effects of RT in adults with a mean age of 65 and older were included. The 25 studies quantified at least one measure of muscle strength or morphology and sufficiently described training variables (e.g., training period, frequency, volume, intensity). Study Appraisal and Synthesis Methods We quantified the overall effects of RT on measures of muscle strength and morphology by computing weighted between-subject standardized mean differences (SMDbs) between intervention and control groups. We analyzed the data for the main outcomes of one-repetition maximum (1RM), maximum voluntary contraction under isometric conditions (MVC), and muscle morphology (i.e., cross-sectional area or volume or thickness of muscles) and assessed the methodological study quality by Physiotherapy Evidence Database (PEDro) scale. Heterogeneity between studies was assessed using I 2 and χ 2 statistics. A random effects meta-regression was calculated to explain the influence of key training variables on the effectiveness of RT in terms of muscle strength and morphology. For meta-regression, training variables were divided into the following subcategories: volume, intensity, and rest. In addition to meta-regression, dose–response relationships were calculated independently for single training variables (e.g., training frequency). Results RT improved muscle strength substantially (mean SMDbs = 1.57; 25 studies), but had small effects on measures of muscle morphology (mean SMDbs = 0.42; nine studies). Specifically, RT produced large effects in both 1RM of upper (mean SMDbs = 1.61; 11 studies) and lower (mean SMDbs = 1.76; 19 studies) extremities and a medium effect in MVC of lower (mean SMDbs = 0.76; four studies) extremities. Results of the meta-regression revealed that the variables “training period” (p = 0.04) and “intensity” (p < 0.01) as well as “total time under tension” (p < 0.01) had significant effects on muscle strength, with the largest effect sizes for the longest training periods (mean SMDbs = 2.34; 50–53 weeks), intensities of 70–79 % of the 1RM (mean SMDbs = 1.89), and total time under tension of 6.0 s (mean SMDbs = 3.61). A tendency towards significance was found for rest in between sets (p = 0.06), with 60 s showing the largest effect on muscle strength (mean SMDbs = 4.68; two studies). We also determined the independent effects of the remaining training variables on muscle strength. The following independently computed training variables are most effective in improving measures of muscle strength: a training frequency of two sessions per week (mean SMDbs = 2.13), a training volume of two to three sets per exercise (mean SMDbs = 2.99), seven to nine repetitions per set (mean SMDbs = 1.98), and a rest of 4.0 s between repetitions (SMDbs = 3.72). With regard to measures of muscle morphology, the small number of identified studies allowed us to calculate meta-regression for the subcategory training volume only. No single training volume variable significantly predicted RT effects on measures of muscle morphology. Additional training variables were independently computed to detect the largest effect for the single training variable. A training period of 50–53 weeks, a training frequency of three sessions per week, a training volume of two to three sets per exercise, seven to nine repetitions per set, a training intensity from 51 to 69 % of the 1RM, a total time under tension of 6.0 s, a rest of 120 s between sets, and a rest of 2.5 s between repetitions turned out to be most effective. Limitations The current results must be interpreted with caution because of the poor overall methodological study quality (mean PEDro score 4.6 points) and the considerable large heterogeneity (I 2 = 80 %, χ 2 = 163.1, df = 32, p < 0.01) for muscle strength. In terms of muscle morphology, our search identified nine studies only, which is why we consider our findings preliminary. While we were able to determine a dose–response relationship based on specific individual training variables with respect to muscle strength and morphology, it was not possible to ascertain any potential interactions between these variables. We recognize the limitation that the results may not represent one general dose–response relationship. Conclusions This systematic literature review and meta-analysis confirmed the effectiveness of RT on specific measures of upper and lower extremity muscle strength and muscle morphology in healthy old adults. In addition, we were able to extract dose–response relationships for key training variables (i.e., volume, intensity, rest), informing clinicians and practitioners to design effective RTs for muscle strength and morphology. Training period, intensity, time under tension, and rest in between sets play an important role in improving muscle strength and morphology and should be implemented in exercise training programs targeting healthy old adults. Still, further research is needed to reveal optimal dose–response relationships following RT in healthy as well as mobility limited and/or frail old adults.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Renal Nutrition
                Journal of Renal Nutrition
                Elsevier BV
                10512276
                March 2023
                March 2023
                : 33
                : 2
                : 346-354
                Article
                10.1053/j.jrn.2022.09.005
                2ce9b0b1-1774-4f1f-b5ec-749f7b9d7200
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article