14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Climate change impacts on potential recruitment in an ecosystem engineer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climate variability and the rapid warming of seas undoubtedly have huge ramifications for biological processes such as reproduction. As such, gametogenesis and spawning were investigated at two sites over 200 km apart on the south coast of Ireland in an ecosystem engineer, the common cockle, Cerastoderma edule. Both sites are classed as Special Areas of Conservation (SACs), but are of different water quality. Cerastoderma edule plays a significant biological role by recycling nutrients and affecting sediment structure, with impacts upon assemblage biomass and functional diversity. It plays a key role in food webs, being a common foodstuff for a number of marine birds including the oystercatcher. Both before and during the study (early 2010–mid 2011), Ireland experienced its two coldest winters for 50 years. As the research demonstrated only slight variation in the spawning period between sites, despite site differences in water and environmental quality, temperature and variable climatic conditions were the dominant factor controlling gametogenesis. The most significant finding was that the spawning period in the cockle extended over a greater number of months compared with previous studies and that gametogenesis commenced over winter rather than in spring. Extremely cold winters may impact on the cockle by accelerating and extending the onset and development of gametogenesis. Whether this impact is positive or negative would depend on the associated events occurring on which the cockle depends, that is, presence of primary producers and spring blooms, which would facilitate conversion of this extended gametogenesis into successful recruitment.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of climate change on marine pelagic phenology and trophic mismatch.

          Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Extreme Cold Winter Temperatures in Europe under the Influence of North Atlantic Atmospheric Blocking

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interactions between climate change and contaminants.

              There is now general consensus that climate change is a global threat and a challenge for the 21st century. More and more information is available demonstrating how increased temperature may affect aquatic ecosystems and living resources or how increased water levels may impact coastal zones and their management. Many ecosystems are also affected by human releases of contaminants, for example from land based sources or the atmosphere, which also may cause severe effects. So far these two important stresses on ecosystems have mainly been discussed independently. The present paper is intended to increase awareness among scientists, coastal zone managers and decision makers that climate change will affect contaminant exposure and toxic effects and that both forms of stress will impact aquatic ecosystems and biota. Based on examples from different ecosystems, we discuss risks anticipated from contaminants in a rapidly changing environment and the research required to understand and predict how on-going and future climate change may alter risks from chemical pollution.
                Bookmark

                Author and article information

                Journal
                Ecol Evol
                Ecol Evol
                ece3
                Ecology and Evolution
                Blackwell Publishing Ltd
                2045-7758
                2045-7758
                March 2013
                04 February 2013
                : 3
                : 3
                : 581-594
                Affiliations
                Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences, University College Cork Ireland
                Author notes
                Emer Morgan, Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences, University College Cork, Ireland. Tel: +00-353-21-4904675; Fax: +00-353-21-4904664; E-mail: E.Morgan@ 123456ucc.ie

                Funding Information This project (SUSFISH) is part-funded by the European Regional Development Fund (ERDF) through the Ireland Wales Programme INTERREG 4A.

                Article
                10.1002/ece3.419
                3605848
                23532482
                2ef62815-db97-4bca-b330-f6ebd2680655
                © 2013 Published by Blackwell Publishing Ltd.

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 05 September 2012
                : 04 October 2012
                : 06 October 2012
                Categories
                Original Research

                Evolutionary Biology
                cerastoderma edule,climate variability,condition index,ecosystem engineer,gametogenesis,phenology

                Comments

                Comment on this article