Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Influence of temperature, hypercapnia, and development on the relative expression of different hemocyanin isoforms in the common cuttlefish Sepia officinalis.

      Journal of experimental zoology. Part A, Ecological genetics and physiology

      Acclimatization, physiology, Animals, Decapodiformes, metabolism, Hemocyanin, chemistry, Hemolymph, Hydrogen-Ion Concentration, Hypercapnia, blood, Oxygen, Pigments, Biological, genetics, Seawater, Temperature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cuttlefish Sepia officinalis expresses several hemocyanin isoforms with potentially different pH optima, indicating their reliance on efficient pH regulation in the blood. Ongoing ocean warming and acidification could influence the oxygen-binding properties of respiratory pigments in ectothermic marine invertebrates. This study examined whether S. officinalis differentially expresses individual hemocyanin isoforms to maintain optimal oxygen transport during development and acclimation to elevated seawater pCO(2) and temperature. Using quantitative PCR, we measured relative mRNA expression levels of three different hemocyanin isoforms in several ontogenetic stages (embryos, hatchlings, juveniles, and adults), under different temperatures and elevated seawater pCO(2). Our results indicate moderately altered hemocyanin expression in all embryonic stages acclimated to higher pCO(2), while hemocyanin expression in hatchlings and juveniles remained unaffected. During the course of development, total hemocyanin expression increased independently of pCO(2) or thermal acclimation status. Expression of isoform 3 is reported for the first time in a cephalopod in this study and was found to be generally low but highest in the embryonic stages (0.2% of total expression). Despite variable hemocyanin expression, hemolymph total protein concentrations remained constant in the experimental groups. Our data provide first evidence that ontogeny has a stronger influence on hemocyanin isoform expression than the environmental conditions chosen, and they suggest that hemocyanin protein abundance in response to thermal acclimation is regulated by post-transcriptional/translational rather than by transcriptional modifications. 2012 Wiley Periodicals, Inc

          Related collections

          Author and article information

          Journal
          22791630
          10.1002/jez.1743

          Comments

          Comment on this article