14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor Microenvironment-Induced Immunometabolic Reprogramming of Natural Killer Cells

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Energy metabolism is key to the promotion of tumor growth, development, and metastasis. At the same time, cellular metabolism also mediates immune cell survival, proliferation and cytotoxic responses within the tumor microenvironment. The ability of natural killer cells to eradicate tumors relies on their ability to functionally persist for the duration of their anti-tumor effector activity. However, a tumor's altered metabolic requirements lead to compromised functional responses of cytokine-activated natural killer cells, which result in decreased effectiveness of adoptive cell-based immunotherapies. Tumors exert these immunosuppressive effects through a number of mechanisms, a key driver of which is hypoxia. Hypoxia also fuels the generation of adenosine from the cancer-associated ectoenzymes CD39 and CD73. Adenosine's immunosuppression manifests in decreased proliferation and impaired anti-tumor function, with adenosinergic signaling emerging as an immunometabolic checkpoint blockade target. Understanding such immunometabolic suppression is critical in directing the engineering of a new generation of natural killer cell-based immunotherapies that have the ability to more effectively target difficult-to-treat solid tumors.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells.

          Elevated lactate dehydrogenase A (LDHA) expression is associated with poor outcome in tumor patients. Here we show that LDHA-associated lactic acid accumulation in melanomas inhibits tumor surveillance by T and NK cells. In immunocompetent C57BL/6 mice, tumors with reduced lactic acid production (Ldha(low)) developed significantly slower than control tumors and showed increased infiltration with IFN-γ-producing T and NK cells. However, in Rag2(-/-)γc(-/-) mice, lacking lymphocytes and NK cells, and in Ifng(-/-) mice, Ldha(low) and control cells formed tumors at similar rates. Pathophysiological concentrations of lactic acid prevented upregulation of nuclear factor of activated T cells (NFAT) in T and NK cells, resulting in diminished IFN-γ production. Database analyses revealed negative correlations between LDHA expression and T cell activation markers in human melanoma patients. Our results demonstrate that lactic acid is a potent inhibitor of function and survival of T and NK cells leading to tumor immune escape.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA.

            Stress-inducible MICA, a distant homolog of major histocompatibility complex (MHC) class I, functions as an antigen for gammadelta T cells and is frequently expressed in epithelial tumors. A receptor for MICA was detected on most gammadelta T cells, CD8+ alphabeta T cells, and natural killer (NK) cells and was identified as NKG2D. Effector cells from all these subsets could be stimulated by ligation of NKG2D. Engagement of NKG2D activated cytolytic responses of gammadelta T cells and NK cells against transfectants and epithelial tumor cells expressing MICA. These results define an activating immunoreceptor-MHC ligand interaction that may promote antitumor NK and T cell responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A2A adenosine receptor protects tumors from antitumor T cells.

              The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in approximately 60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia-->adenosine-->A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia-->adenosine-->A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                08 November 2018
                2018
                : 9
                : 2517
                Affiliations
                [1] 1Department of Industrial and Physical Pharmacy, Purdue University , West Lafayette, IN, United States
                [2] 2Center for Cancer Research, Purdue University , West Lafayette, IN, United States
                Author notes

                Edited by: Kate Stringaris, National Institutes of Health (NIH), United States

                Reviewed by: Anna Karolina Kozlowska, Poznan University of Medical Sciences, Poland; Christine Susanne Falk, Hannover Medical School, Germany

                *Correspondence: Sandro Matosevic sandro@ 123456purdue.edu

                This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2018.02517
                6235907
                30467503
                3008e1d9-8348-4c71-aeda-0a3e586d5156
                Copyright © 2018 Chambers, Lupo and Matosevic.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 May 2018
                : 12 October 2018
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 108, Pages: 10, Words: 8106
                Funding
                Funded by: Indiana Clinical and Translational Sciences Institute 10.13039/100006975
                Award ID: UL1TR001108
                Categories
                Immunology
                Review

                Immunology
                immunometabolism,natural killer cells,immunotherapy,tumor microenvironment,adenosine
                Immunology
                immunometabolism, natural killer cells, immunotherapy, tumor microenvironment, adenosine

                Comments

                Comment on this article