37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular and Cellular Mechanisms of Sperm-Oocyte Interactions Opinions Relative to in Vitro Fertilization (IVF)

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the biggest prerequisites for pregnancy is the fertilization step, where a human haploid spermatozoon interacts and penetrates one haploid oocyte in order to produce the diploid zygote. Although fertilization is defined by the presence of two pronuclei and the extraction of the second polar body the process itself requires preparation of both gametes for fertilization to take place at a specific time. These preparations include a number of consecutive biochemical and molecular events with the help of specific molecules and with the consequential interaction between the two gametes. These events take place at three different levels and in a precise order, where the moving spermatozoon penetrates (a) the outer vestments of the oocyte, known as the cumulus cell layer; (b) the zona pellucida (ZP); where exocytosis of the acrosome contents take place and (c) direct interaction of the spermatozoon with the plasma membrane of the oocyte, which involves a firm adhesion of the head of the spermatozoon with the oocyte plasma membrane that culminates with the fusion of both sperm and oocyte membranes (Part I). After the above interactions, a cascade of molecular signal transductions is initiated which results in oocyte activation. Soon after the entry of the first spermatozoon into the oocyte and oocyte activation, the oocyte’s coat (the ZP) and the oocyte’s plasma membrane seem to change quickly in order to initiate a fast block to a second spermatozoon (Part II). Sometimes, two spermatozoa fuse with one oocyte, an incidence of 1%–2%, resulting in polyploid fetuses that account for up to 10%–20% of spontaneously aborted human conceptuses. The present review aims to focus on the first part of the human sperm and oocyte interactions, emphasizing the latest molecular and cellular mechanisms controlling this process.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs.

          Representing the 60 trillion cells that build a human body, a sperm and an egg meet, recognize each other, and fuse to form a new generation of life. The factors involved in this important membrane fusion event, fertilization, have been sought for a long time. Recently, CD9 on the egg membrane was found to be essential for fusion, but sperm-related fusion factors remain unknown. Here, by using a fusion-inhibiting monoclonal antibody and gene cloning, we identify a mouse sperm fusion-related antigen and show that the antigen is a novel immunoglobulin superfamily protein. We have termed the gene Izumo and produced a gene-disrupted mouse line. Izumo-/- mice were healthy but males were sterile. They produced normal-looking sperm that bound to and penetrated the zona pellucida but were incapable of fusing with eggs. Human sperm also contain Izumo and addition of the antibody against human Izumo left the sperm unable to fuse with zona-free hamster eggs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Juno is the egg Izumo receptor and is essential for mammalian fertilisation

            Fertilisation occurs when sperm and egg recognise each other and fuse to form a new, genetically distinct organism. The molecular basis of sperm-egg recognition is unknown, but is likely to require interactions between receptor proteins displayed on their surface. Izumo1 is an essential sperm cell surface protein, but its egg receptor has remained a mystery. Here, we identify Juno as the receptor for Izumo1 on mouse eggs, and show this interaction is conserved within mammals. Female mice lacking Juno are infertile and Juno-deficient eggs do not fuse with normal sperm. Rapid shedding of Juno from the oolemma after fertilisation suggests a mechanism for the membrane block to polyspermy, ensuring eggs normally fuse with just a single sperm. Our discovery of an essential receptor pair at the nexus of conception provides opportunities for the rational development of new fertility treatments and contraceptives.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility.

              Mammalian spermatozoa become motile at ejaculation, but before they can fertilize the egg, they must acquire more thrust to penetrate the cumulus and zona pellucida. The forceful asymmetric motion of hyperactivated spermatozoa requires Ca2+ entry into the sperm tail by an alkalinization-activated voltage-sensitive Ca2+-selective current (ICatSper). Hyperactivation requires CatSper1 and CatSper2 putative ion channel genes, but the function of two other related genes (CatSper3 and CatSper4) is not known. Here we show that targeted disruption of murine CatSper3 or CatSper4 also abrogated ICatSper, sperm cell hyperactivated motility and male fertility but did not affect spermatogenesis or initial motility. Direct protein interactions among CatSpers, the sperm specificity of these proteins, and loss of ICatSper in each of the four CatSper-/- mice indicate that CatSpers are highly specialized flagellar proteins.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                22 July 2014
                July 2014
                : 15
                : 7
                : 12972-12997
                Affiliations
                Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine Larisa, University of Thessaly, Larissa 41110, Greece; E-Mails: pireaschristina@ 123456gmail.com (C.M.); kdafop@ 123456yahoo.com (K.D.); sotirious@ 123456med.uth.gr (S.S.); messinis@ 123456med.uth.gr (I.M.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: ganif@ 123456med.uth.gr ; Tel.: +30-241-350-1192.
                Article
                ijms-15-12972
                10.3390/ijms150712972
                4139886
                25054321
                30562761-65a1-4884-bdac-09cde4856fc4
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 05 May 2014
                : 07 June 2014
                : 24 June 2014
                Categories
                Review

                Molecular biology
                oocyte,spermatozoa,fertilization,in vitro fertilization (ivf)
                Molecular biology
                oocyte, spermatozoa, fertilization, in vitro fertilization (ivf)

                Comments

                Comment on this article